This problem set is due on: Wednesday, February 16, 2005. Note that Problem 5 is optional. If you turn in a solution to Problem 5, your lowest score among the five problems will be dropped when determining your grade for this problem set.

Problem 1

Suppose p is a prime and g and h are both generators of Z_{p}^{*}. Prove or disprove the following statements about equality of probability distributions:

A: $\quad\left\{x \leftarrow Z_{p}^{*}: g^{x} \quad \bmod p\right\}=\left\{x \leftarrow Z_{p}^{*} ; y \leftarrow Z_{p}^{*}: g^{x y} \bmod p\right\}$
B: $\quad\left\{x \leftarrow Z_{p}^{*}: g^{x} \bmod p\right\}=\left\{x \leftarrow Z_{p}^{*}: h^{x} \bmod p\right\}$
C: $\quad\left\{x \leftarrow Z_{p}^{*}: g^{x} \bmod p\right\}=\left\{x \leftarrow Z_{p}^{*}: x^{g} \bmod p\right\}$
D: $\quad\left\{x \leftarrow Z_{p}^{*}: x^{g} \quad \bmod p\right\}=\left\{x \leftarrow Z_{p}^{*}: x^{g h} \quad \bmod p\right\}$

Problem 2

Suppose that the Prime Discrete Logarithm Problem is easy. That is, suppose that there exists a probabilistic, polynomial time algorithm A that, on inputs p, g and $g^{x} \bmod p$, outputs x if p is a prime, g is a generator of Z_{p}^{*} and $g^{x} \bmod p$ is prime. Show that there exists a probabilistic polynomial-time algorithm, B, that solves the Discrete Logarithm Problem.

Problem 3

We define the Lily problem as: given two integers n and S determine whether S is relatively prime to $\phi(n)$. Prove that if it is hard to determine on inputs two integers n and e whether e is relatively prime with $\phi(n)$, then the RSA function is hard to invert.

Problem 4: Factoring

Let O_{n} be an oracle that on input x returns a square root of $x \bmod n$, if one exists, and \perp otherwise. Prove that there exists a probabilistic polynomial-time algorithm that on input an integer n and access to O_{n} outputs n 's factorization.

Problem 5: Factoring and OWF (OPTIONAL)

Prove that if factoring is hard, then one-way functions (as defined in class) exist.

