## Handout 9: Problem Set \#4

This problem set is due on: March 30, 2005.

## Problem 1 - PRG $\Rightarrow$ OWF

Prove that the existence of a secure Pseudo-Random Generator implies the existence of a length-preserving One-Way Function

## Problem 2 - PRGs and Permutations

Let $G$ be a pseudorandom generator with expansion function $\ell(k)$, and let $h$ be any length-preserving permutation (which is not necessarily polynomial-time computable).

A: Is it necessarily true that the distribution $h(G(s))$ (where $s$ is chosen uniformly at random from $\{0,1\} k$ ) is indistinguishable from the uniform distribution over $\{0,1\} \ell(k)$ ? Is $h(G(s))$ a pseudorandom generator? Justify your answers.

B: Is it necessarily true that the distribution $G(h(s)$ ) (where $s$ is chosen uniformly at random from $\{0,1\} k$ ) is indistinguishable from the uniform distribution over $\{0,1\} \ell(k)$ ? Is $G(h(s))$ a pseudorandom generator? Justify your answers.

C: Will your answers to the previous parts change if it is known that $h$ is polynomialtime computable?

## Problem 3 - Composing PRGs

Let $G_{1}, G_{2}$ be PRGs with expansion functions $\ell_{1}(k), \ell_{2}(k)$ (respectively). For each of the candidates below, justify whether the function is a PRG or not. If yes, then provide a security reduction. If not, provide a counterexample.

A: $\quad G_{A}(x)=\operatorname{reverse}\left(G_{1}(x)\right)$ where the reverse() reverses the bits of its argument.
B: $\quad G_{B}(x)=G_{1}(x) \circ G_{2}(x)$
C: $\quad G_{C}(x \circ y)=G_{1}(x) \circ G_{2}(y)$, where $|x|=|y|$ or $|x|=|y|+1$

D: $\quad G_{D}(x)=G_{2}\left(G_{1}(x)\right)$
E: $\quad G_{E}(x)=G_{1}(x) \oplus\left(x \circ 0^{\ell_{1}(|x|)-|x|}\right)$

## Problem 4 - Unpredictability $\Rightarrow$ Indistinguishability

In class we proved that if the output of a generator $G:\{0,1\}^{k} \rightarrow\{0,1\}^{n}$ (here $n$ is some polynomial of $k$ ) passes the next bit unpredictability test, then it passes all statistical tests. The proof used a hybrid argument to show that if there was a polynomial time statistical test $A$ that distinguishes a completely random string from one generated by $G$, then the test could distinguish between a string in which the first $i$ bits are from $G$ and the rest random, and a string in which the first $i+1$ bits are from $G$ and the rest random. To complete the proof, we then need to show how to use this to predict the next bit $(i+1)$ from the first $i$ bits with probability non-negligible better than $\frac{1}{2}$. Below are some suggestions of how to produce such a guess for the $(i+1)$ st bit.

For each of the suggested predictors, give a convincing explanation of whether it is indeed a good predictor or not. Supply a formal proof for one of the good predictors. That is, prove that it indeed guesses correctly with probability better than $\frac{1}{2}+\frac{1}{Q(k)}$ for some polynomial $Q$. Denote by $G_{m}$ the first $m$ bits of $G(x)$ (where $x$ is a random seed), and by $R_{m}$ (or $R_{m}^{\prime}$ ) a sequence of $m$ random bit chosen from the uniform distribution. Assume without loss of generality that $\operatorname{Pr}\left[A\left(G_{i} R_{n-i}\right)=0\right]=p$, and that $\operatorname{Pr}\left[A\left(G_{i+1} R_{n-i-1}\right)=\right.$ $0]=p+\frac{1}{k^{c}}$ for some $c>0$ (that is, we are assuming w.l.o.g. that $A$ outputs 0 more often when the $(i+1)$ st bit is from $G)$. We are now given $i$ bits $G_{i}$, and want to guess the next bit. Consider the following predictors.
(a) Run the test $A$ first on $G_{i} 0 R_{n-i-1}$ and call the output $a_{0}$. Then run $A$ on $G_{i} 1 R_{n-i-1}^{\prime}$ and call the output $a_{1}$. If $a_{0}=a_{1}$ output 0 , otherwise output 1 .
(b) Run the test $A$ first on $G_{i} 0 R_{n-i-1}$ and call the output $a_{0}$. Then run $A$ on $G_{i} 1 R_{n-i-1}^{\prime}$ and call the output $a_{1}$. If $a_{0}=a_{1}$ choose the output to be 0 or 1 randomly (with probability $\frac{1}{2}$ ). Otherwise, output the bit $b$ for which $a_{b}=0$ (that is, if $a_{0}=0$ output 0 , and if $a_{1}=0$ output 1).
(c) Run the test $A$ on $G_{i} R_{n-i}$. If the answer is 0 , output the first bit of $R_{n-i}$ (which is the $(i+1)$ st bit in the string above). If the answer is 1 , output the negation of that bit.
(d) Run the test $A$ on $G_{i} 0 R_{n-i-1}$ for polynomially many times (each time with new independent $R_{n-i-1}$ ), and count how many times $A$ outputs 0 . If this fraction is closer to $p+\frac{1}{k^{c}}$ than to $p$, then output 0 , otherwise output 1 .

