
6.875/18.425J Cryptography and Cryptanalysis March 13, 2005

Handout 9: Problem Set #4

This problem set is due on: March 30, 2005.

Problem 1 PRG OWF ⇒

Prove that the existence of a secure PseudoRandom Generator implies the existence of
a lengthpreserving OneWay Function

Problem 2 PRGs and Permutations

Let G be a pseudorandom generator with expansion function �(k), and let h be any
lengthpreserving permutation (which is not necessarily polynomialtime computable).

A:	 Is it necessarily true that the distribution h(G(s)) (where s is chosen uniformly
at random from {0, 1}k) is indistinguishable from the uniform distribution over
{0, 1}�(k)? Is h(G(s)) a pseudorandom generator? Justify your answers.

B:	 Is it necessarily true that the distribution G(h(s)) (where s is chosen uniformly
at random from {0, 1}k) is indistinguishable from the uniform distribution over
{0, 1}�(k)? Is G(h(s)) a pseudorandom generator? Justify your answers.

C:	 Will your answers to the previous parts change if it is known that h is polynomial
time computable?

Problem 3 Composing PRGs

Let G1, G2 be PRGs with expansion functions �1(k),�2(k) (respectively). For each of the
candidates below, justify whether the function is a PRG or not. If yes, then provide a
security reduction. If not, provide a counterexample.

A: GA(x) = reverse(G1(x)) where the reverse() reverses the bits of its argument.

B:	 GB (x) = G1(x) ◦ G2(x)

C:	 GC (x ◦ y) = G1(x) ◦ G2(y), where x = y or x = y + 1 | | | | | | | |

91

�

D:	 GD (x) = G2(G1(x))

E:	 GE (x) = G1(x) ⊕ (x 0�1 (|x|)−|x|)◦

Problem 4 Unpredictability ⇒ Indistinguishability

In class we proved that if the output of a generator G : {0, 1}k n (here n is some → {0, 1}
polynomial of k) passes the next bit unpredictability test, then it passes all statistical
tests. The proof used a hybrid argument to show that if there was a polynomial time
statistical test A that distinguishes a completely random string from one generated by
G, then the test could distinguish between a string in which the first i bits are from G
and the rest random, and a string in which the first i + 1 bits are from G and the rest
random. To complete the proof, we then need to show how to use this to predict the
next bit (i + 1) from the first i bits with probability nonnegligible better than 1 . Below

2
are some suggestions of how to produce such a guess for the (i + 1)st bit.

For each of the suggested predictors, give a convincing explanation of whether it is indeed
a good predictor or not. Supply a formal proof for one of the good predictors. That is,

1prove that it indeed guesses correctly with probability better than
2 +

Q(
1
k) for some

polynomial Q. Denote by Gm the first m bits of G(x) (where x is a random seed), and by
Rm (or Rm) a sequence of m random bit chosen from the uniform distribution. Assume
without loss of generality that Pr[A(GiRn−i) = 0] = p, and that Pr[A(Gi+1Rn−i−1) =
0] = p+

k
1
c for some c > 0 (that is, we are assuming w.l.o.g. that A outputs 0 more often

when the (i + 1)st bit is from G). We are now given i bits Gi, and want to guess the
next bit. Consider the following predictors.

(a) Run the test A first on Gi0Rn−i−1 and call the output a0. Then run A on Gi1R
�
n−i−1

and call the output a1. If a0 = a1 output 0, otherwise output 1.

(b) Run the test A first on Gi0Rn−i−1 and call the output a0. Then run A on Gi1R
�
n−i−1

and call the output a1. If a0 = a1 choose the output to be 0 or 1 randomly (with
1probability
2). Otherwise, output the bit b for which ab = 0 (that is, if a0 = 0

output 0, and if a1 = 0 output 1).

(c) Run the test A on GiRn−i. If the answer is 0, output the first bit of Rn−i (which
is the (i + 1)st bit in the string above). If the answer is 1, output the negation of
that bit.

(d) Run the test	A on Gi0Rn−i−1 for polynomially many times (each time with new
independent Rn−i−1), and count how many times A outputs 0. If this fraction is
closer to p +

k
1
c than to p, then output 0, otherwise output 1.

92

