
6.875/18.425J Cryptography and Cryptanalysis March 13, 2005 

Handout 9: Problem Set #4 

This problem set is due on: March 30, 2005. 

Problem 1  PRG OWF ⇒ 

Prove that the existence of a secure PseudoRandom Generator implies the existence of 
a lengthpreserving OneWay Function 

Problem 2  PRGs and Permutations 

Let G be a pseudorandom generator with expansion function �(k), and let h be any 
lengthpreserving permutation (which is not necessarily polynomialtime computable). 

A:	 Is it necessarily true that the distribution h(G(s)) (where s is chosen uniformly 
at random from {0, 1}k) is indistinguishable from the uniform distribution over 
{0, 1}�(k)? Is h(G(s)) a pseudorandom generator? Justify your answers. 

B:	 Is it necessarily true that the distribution G(h(s)) (where s is chosen uniformly 
at random from {0, 1}k) is indistinguishable from the uniform distribution over 
{0, 1}�(k)? Is G(h(s)) a pseudorandom generator? Justify your answers. 

C:	 Will your answers to the previous parts change if it is known that h is polynomial
time computable? 

Problem 3  Composing PRGs 

Let G1, G2 be PRGs with expansion functions �1(k),�2(k) (respectively). For each of the 
candidates below, justify whether the function is a PRG or not. If yes, then provide a 
security reduction. If not, provide a counterexample. 

A: GA(x) = reverse(G1(x)) where the reverse() reverses the bits of its argument. 

B:	 GB (x) = G1(x) ◦ G2(x) 

C:	 GC (x ◦ y) = G1(x) ◦ G2(y), where x = y or x = y + 1 | | | | | | | | 
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D:	 GD (x) = G2(G1(x)) 

E:	 GE (x) = G1(x) ⊕ (x 0�1 (|x|)−|x|)◦

Problem 4  Unpredictability ⇒ Indistinguishability 

In class we proved that if the output of a generator G : {0, 1}k n (here n is some → {0, 1}
polynomial of k) passes the next bit unpredictability test, then it passes all statistical 
tests. The proof used a hybrid argument to show that if there was a polynomial time 
statistical test A that distinguishes a completely random string from one generated by 
G, then the test could distinguish between a string in which the first i bits are from G 
and the rest random, and a string in which the first i + 1 bits are from G and the rest 
random. To complete the proof, we then need to show how to use this to predict the 
next bit (i + 1) from the first i bits with probability nonnegligible better than 1 . Below 

2 
are some suggestions of how to produce such a guess for the (i + 1)st bit. 

For each of the suggested predictors, give a convincing explanation of whether it is indeed 
a good predictor or not. Supply a formal proof for one of the good predictors. That is, 

1prove that it indeed guesses correctly with probability better than 
2 + 

Q(
1 
k) for some 

polynomial Q. Denote by Gm the first m bits of G(x) (where x is a random seed), and by 
Rm (or Rm) a sequence of m random bit chosen from the uniform distribution. Assume 
without loss of generality that Pr[A(GiRn−i) = 0] = p, and that Pr[A(Gi+1Rn−i−1) = 
0] = p+ 

k
1 
c for some c > 0 (that is, we are assuming w.l.o.g. that A outputs 0 more often 

when the (i + 1)st bit is from G). We are now given i bits Gi, and want to guess the 
next bit. Consider the following predictors. 

(a) Run the test A first on Gi0Rn−i−1 and call the output a0. Then run A on Gi1R
�
n−i−1 

and call the output a1. If a0 = a1 output 0, otherwise output 1. 

(b) Run the test A first on Gi0Rn−i−1 and call the output a0. Then run A on Gi1R
�
n−i−1 

and call the output a1. If a0 = a1 choose the output to be 0 or 1 randomly (with 
1probability 
2 ). Otherwise, output the bit b for which ab = 0 (that is, if a0 = 0 

output 0, and if a1 = 0 output 1). 

(c) Run the test A on GiRn−i. If the answer is 0, output the first bit of Rn−i (which 
is the (i + 1)st bit in the string above). If the answer is 1, output the negation of 
that bit. 

(d) Run the test	A on Gi0Rn−i−1 for polynomially many times (each time with new 
independent Rn−i−1), and count how many times A outputs 0. If this fraction is 
closer to p + 

k
1 
c than to p, then output 0, otherwise output 1. 
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