
6.876/18.426: Advanced Cryptography	 28.4.2003.

Lecture Concurrent Zero Knowledge in Polylogarithmic Rounds

Scribed by: Nenad Dedić

1	 Introduction

The subject of these notes is concurrent zero knowledge, in particular the construction given
in [KP01].

Zero knowledgeness property of zero knowledge proof systems is defined with respect
to an adversarial verifier that does not attempt to run multiple instances of a protocol
concurrently. It is possible to prove that such protocols can be composed serially with-
out substantial loss of security. However, it is unclear whether parallel (more generally,
concurrent) composition preserves security. Simulating a protocol then seems to become
computationally more demanding in the concurrent setting. Namely, there are protocols
that, to the best of our current knowledge, take exponential time to simulate.

However, requiring concurrent composability, is natural, as there is no reason to limit
the adversary’s capability to run multiple protocols concurrently. Therefore, it is of interest
to attempt to construct zero-knowledge proof systems that are concurrent composable.

2	 Concurrent Composable Zero Knowledge: The Construc

tion

In this section, we give an overview of the construction of [KP01].

2.1 Stating the Objective

It has been demonstrated in previous lectures that many statements that need to be proven
in various protocols are NP. Furthermore, NP has complete problems, which is particularly
convenient, as it often only need be demonstrated that a complete problem has a certain
property, from which it follows that all other NP problems have it. This was certainly the
case with zero knowledge proofs.

Therefore, we declare our goal to construct a zero-knowledge proof system for any
NP language that is concurrent composable. Concurrent composability means that
we allow the verifier to interact with multiple independent provers, intertwining
those interactions in any way it pleases (the two extremes being fully serial and fully
parallel).

2.2 Tools and Assumptions

Now we turn to describe which cryptographic tools (primitives) are used to construct concur-
rent composable zero knowledge proof systems. We also identify the necessary assumptions.

21-1

19:

Zero knowledge proofs for NP

We assume that for any language in NP, a zero knowledge proof system can be constructed.
As a brief reminder, zero knowledge proof system for a language L is a protocol between
two parties, the prover P and the verifier V, that satisfies three properties (for detailed
definitions, please refer to the previous lectures):

•	 completeness: any x ∈ L is accepted with overwhelming probability

•	 soundness: any x /∈ L is accepted with negligible probability

∗•	 zero knowledgeness: for any x ∈ L and any probabilistic polynomial time V , there
∗ ·is an oracle machine S (simulator) such that SV (x) is indistinguishable from the view

∗of V

Bit commitment schemes

We assume that commitment schemes exist. In a commitment scheme, there are two parties:
one of them, Alice, wishes to commit to a message, but delay the revealing of it; the other
one, Bob, wishes to be certain that, when Alice reveals the message, it indeed is the one
she commited to.

A non-cryptographic solution to the problem is: Alice and Bob communicate; at some
point, Alice puts a message in a safe visible by both her and Bob, locks it and keeps the key;
they continue the conversation; when she wishes to decommit, she gives the key to Bob.
When Bob unlocks the safe, he is reasonably certain that Alice could not have tampered
with the message inside while it was locked.

In terms of cryptography, a bit commitment scheme is a triple of probabilistic polynomial
time procedures (Setup,Commit,Open) with the following properties:

•	 functional:

–	 CK ← (Setup(1k) (given a security parameter, the setup procedure outputs a
public commitment key)

–	 (c, d) ← CommitCK(m) (given a message, the commit procedure outputs a com-
mitment c and an opening value d)

–	 m ← OpenCK(c, d)) (given a commitment and a decommitment value, the open
procedure outputs m; m may either be a message, or a special symbol that
denotes the invalidity of the input (c, d))

•	 security:

–	 Hiding: For any adversary1 A, it is infeasible to generate two messages m0

and m1 such that A can distinguish their commitments c0 and c1 ((ci , di) =
CommitCK(mi)).

–	 Binding: For any adversary A, it is infeasible to generate a triple (c, d, d′)
such that (c, d) and (c, d′) open to different messages, i.e, m ← OpenCK(c, d),
m ← OpenCK(c, d) and m �′	 = m′ .

The restrictions on the computational resources of the adversary will be discussed later in the text.

21-2

1

We consider two flavours of commitment schemes: perfectly binding and statistically
hiding. The difference lies in the limitations to the resources available to the adversaries.
A perfectly binding commitment scheme is a commitment scheme whose

•	 hiding property holds against a probabilistic polynomial time adversary, with
negligible insecurity

•	 binding property holds against an unbounded adversary, with information-theoretic
security

A statistically hiding commitment scheme is a commitment scheme whose

•	 hiding property holds against an computationally unbounded adversary, resources,
with negligible insecurity

•	 binding property holds against a probabilistic polynomial time adversary, with
negligible insecurity

It should be noted that the commitment schemes are concurrent composable, i.e, running
multiple schemes concurrently does not jeopardize either hiding or binding property.

Witness Indistinguishability

Even though we mention zero knowledge proof systems as one of the key ingredients in build-
ing concurrent composable ones, it is in fact sufficient that we use witness indistinguishable
proof systems.

A witness indistinguishable proof system must satisfy completeness and soundness as
described for zero knowledge proof systems, but the last requirement is weaker. We only
require that no probabilistic polynomial time machine can tell if w1 or w2 were used as a
witness. For more details refer to [Gol01].

Assumptions

We have seen earlier in the course that existence of commitment schemes implies the ex-
istence of zero knowledge proof systems for NP. In addition to that, it is known that
statistically hiding commitment schemes exist if collections of claw-free permutations ex-
ist [DPP93] and that perfectly binding commitment schemes exist if one-way functions do
[Nao91].

But zero knowledge proof systems for NP, two round perfectly binding and two round
statistically hiding commitment schemes are the only ingredients we need in constructing
concurrent composable zero knowledge proof systems. Thus existence of collections of claw-
free permutations suffices.

2.3 The Construction

We first state the main result of [KP01]:

21-3

Theorem [Main]: Assume that collections of claw-free permutations exist. Let k be a
complexity parameter bounding the size of the input. The verifier is polynomial time in
k and the concurrent proof may consist of polynomially many in k instances. Under this
condition, a zero knowledge proof system exists for any L ∈ NP that is computational,
black-box, concurrent composable and it has ω(log2 k) rounds.

Let us now see the construction. Let L ∈ NP and T ∈ L (T is an NP statement
that we wish to prove). The prover and the verifier first exchange some messages that
facilitate concurrent composability, and then proceed to prove in a zero knowledge fashion
a statement T ′ very similar to T . The messages exchanged prior to proving T ′ are called
preamble while the messages that constitute the proof of T ′ are called body.

Protocol [CZK]:

1. V → P: commit to random v1, . . . , vm

2. P → V: commit to p1

3. V → P: reveal v1

4. P → V: commit to p2

5. V → P: reveal v2

. . .
2m − 1. V → P: reveal vm−1

2m. P → V: commit to pm

2m + 1. V → P: reveal vm

2m + 2 P ↔ V: carry out a zero knowledge proof that: (T ∈ L) ∨ (∃i)pi = vi

. . . (T ′, the modified statement, is precisely (T ∈ L) ∨ (∃i)pi = vi)

where m = ω(log2 k).

The verifier’s commitments are statistically hiding, and the prover’s are perfectly bind-
ing.

If the verifier fails to open any of its commitments correctly, the protocol should be
terminated.

The idea behind this protocol is that the preamble makes it possible for the simulator
to find i such that pi = vi after a reasonable number of rewinds. This in turn constitutes a
witness for T ′, so the simulator may act as a real prover in the body of the protocol, thus
creating a view distributed as expected.

On the other hand, soundness is not significantly affected because the real prover is
unable to rewind the protocol, so it is computationally infeasible for it to find i such that
vi = pi. Thus in order to give a convincing proof, it must prove T ∈ L. Completeness is
not affected at all, because T ′ can be proven by proving T ∈ L. The next section explains
completeness and soundness in some more detail.

2.4 Completeness and Soundness of the Protocol

For any zero knowledge proof system, let us call the probability that the prover fails to
prove a true statement completeness error, and the probability that the verifier accepts a
false statement soundness error.

21-4

Let (P, V) be a zero knowledge proof system for L (for the original language, not for
the modified statement). Denote with εc and εs the completeness and soundness errors of
(P, V).

Claim [Completeness]: The completeness error of the protocol CZK is no greater than
εc, that of the original zero knowledge proof system.

This is so, because if T ∈ L, the prover simply proves that statement in the body. The
probability of failing is εc.

Claim [Soundness]: The soundness error of the protocol CZK is no greater than εs + ν(k),
where ν is a negligible function.

Let us first see where the soundnes might go wrong. The prover might conceivably get
an advantage by commiting to pi such that both Commit(vi) and Commit(pi) open to the
same value. Note that to do that, the prover need not necessarily learn all the information
about some vi. But if the verifier uses a non-malleable commitment scheme, then it is not
in prover’s power to construct commitments that are correlated to Commit(vi)

However instead of using a non-malleable commitment scheme, we achive the desired
security by having the verifier use a statistically hiding commitment scheme, and prover
use a perfectly hiding one. This eliminates any but negligible chance that prover can open
one of its commitments to the same value as the verifier. Namely, because of statistically
hiding property, the value pi cannot be non-negligibly correlated with vi. On the other
hand, because of the perfectly binding property, Commit(pi) can be open in only one way.
Therefore the protocol is sound.

2.5 Zero Knowledgeness of the Protocol in Concurrent Setting

As usual, we demonstrate the zero knowledgeness of the protocol by constructing a simula-
tor. The simulator is a probabilistic polynomial time and it interacts in a black box manner
with the verifier. Its goal is to produce a view whose distribution is indistinguishable from
that of the real verifier. Of course we allow the verifier to execute multiple interactions with
the prover concurrently.

We already said that the preamble is the simulator’s fulcrum. It suffices that for each
proof, the simulator finds one index i such that pi = vi. That index is a witness for T ′, so the
simulator may proceed to prove T ′. A naive way to find a suitable index is to simply rewind
after the verifier opens Commit(vi) for some i, and then set pi ← vi and continue. After
rewinding and setting pi, the verifier must open the same value as it did before rewinding,
since it commited to it even earlier. Seemingly, this achieves our goal. However, rewinding
by need, as we may call this schedule, may lead to exponential time simulation. This is so
because many other instances may be nested in between Commit(pi) and Open(Commit(vi)).

We now observe that several problems need to be addressed:

• a more clever rewinding schedule must be employed

• the rewinding schedule must enable the simulator to learn the verifiers’ secrets

21-5

•	 it needs to be proven that proving that some vi is equal to the corresponding pi

does not noticably slant the simulator’s distribution away from the verifier’s view
(remember, the real prover proves that T ∈ NP, while the simulator proves that
(∃i)vi = pi)

•	 it needs to be proven that the simulator runs in polynomial time

The following sections describe how these issues are solved, if static scheduling is assumed.
That means that we assume that the adversary, who starts the proof sessions as it pleases,
and intersperses their messages, determines the schedule of the messages in advance, in-
dependently of the content of the messages. In the paper [KP01], dynamic scheduling is
addressed as well.

Rewinding

The simulator needs to be able to provide a “good” portion of the view for each proof
(remember, we are considering concurrent setting and many proofs may be running con-
currently). The simulator does so by rewinding after learning vi, so that it is able to set pi

equal to vi, which is the desired event for each proof. Thus we say that the simulator solves
a proof if it is able to set pi = vi for some i.

Cleary, in order to solve a proof the simulator must, after seeing the verifier’s decom-
mitment Open(Commit(vi)), rewind past the point where it commited to pi. However, the
simulator must not rewind too far, because it might rewind past the verifier’s commitments,
thereby rendering useless vi’s that it had learned. Also the simulator must not let the first
run (the one before rewinding) go past the preamble, because otherwise the verifier might
just notice that something has gone wrong and stop responding.

Once again we stress that a naive solution: picking an index i and, after learning vi

rewinding just enough to set pi = vi, does not necessarily work. Instead we employ an
oblivious rewinding schedule.

Since we are assuming static scheduling by the adversary, and we only care about pream-
bles, we may view the adversary’s schedule as mk slots which contain pairs of messages.
Each pair consists of a commitment by the simulator (prover) to pi, followed by the verifier
revealing vi. Determining a rewinding strategy now amounts to “walking back and forth”
on these mk slots.

The oblivious rewinding strategy that gives all the desired properties is described by
the following procedure:

Schedule(a..b):
if b − a = 1 then return the following schedule:

execute a

execute b

a+b−1)compute s1 as Schedule(a.. 2

compute s2 as Schedule(a+b+1 ..b)
2
return the following schedule:

execute schedule s1 and remember the values vi

a+b−1
rewind → a2

execute schedule s1 again, this time setting pi appropriately

21-6

execute schedule s2 and remember the values vi
a+b+1rewind b → 2

execute schedule s2 again, this time setting pi appropriately

The simulator’s rewind strategy is then Schedule(1..mk). For example, when mk = 8, the
slots executed are: 1, 2, 1, 2, 3, 4, 3, 4, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 7, 8, 7, 8, 5, 6, 5, 6,
7, 8, 7, 8.

The Rewinding Schedule Solves All Proofs With High Probability

We already said that the simulator solves a proof if it learns some vi of the proof in the first
run (before rewinding). Then after rewinding, it sets pi = vi. However, it is not obvious
that the above rewinding schedule guarantees that every proof is solved.

Let us first identify a necessary condition that during a particular rewind, a proof is
solved.

Definition: We say that a rewind l → k may solve a proof Π if:

•	 the first round of Π is in a slot before k

•	 the last round of Π is in a slot after l

•	 exactly two rounds of Π2 are in slots k, k + 1, . . . , l

•	 the first round of Π appears in the first half of l → k and the second round in the
second half

This definition captures a necessary condition that the rewind l → k is the smallest
rewind that has a chance of solving Π. The first two bullets guarantee that the rewind has
a chance of solving Π, and the other two that it is the minimal one.

The distinction between the notions “solve a proof ” and “may solve a proof” is justified,
because not every rewind that may solve a proof actually solves it. That can happen if the
verifier, whether maliciously or erroneously, decides not to disclose vi during the first run.
However, [KP01] demonstrate that there are enough rewinds that may solve any particular
proof, to compensate for the verifier’s malice or flaws.

Lemma [Rewinds]: For any schedule of k copies of the proof preambles, each with m
pairs of messages, if the preamble of a specific proof Π completes in slot l, then there are
at least � m 	 − 2 rewinds that complete by slot l and that may solve Π. log(mk)+1

In addition to that, it can be computed that each rewind that may solve a proof, indeed
solves it with probability at least 2 . Roughly, the computation is based on the fact that the 3
only way in which the verifier might force the simulator to not solve a proof, when it may,
is to hide vi in the first run and reveal it in the second one. Because of the hiding property
of the commitment scheme used by the prover, the verifier is not able to tell which run is

In this definition, by “proof” and Π we mean “preamble” and “preamble of Π”.

21-7

2

� � �

currently happening, and thus cannot determine when to hide vi and when not to vi better
than by flipping a coin.

By the previous lemma, using m = ω(log2 k) we get that there are

ω(log2 k)
a ≥ = ω(log k)

log k + log m

1rewinds in which a particular proof Π may be solved. Now because there are less than 3
chance of a proof not being solved during any of these rewinds, and all of them are disjoint,
we have that with probability at most

a 1
�ω(log k)1

= = ν(k)
3 3

the proof Π is not solved during any rewind (ν is a negligible function). Now using the
union bound we get that there is only negligible probability that any proof is not solved at
all.

The Indistinguishability of the Views
∗

Theorem [Indistinguishability of the Views]: If the simulator SV solves each proof,
∗ ∗then the view of the verifier V (in the proof system (P, V) is indistinguishable from the

view generated by S.

Let us first see what are the issues in proving this theorem. First, the preambles gener-
ated by the simulator are different than the ones generated by the real proof system. That
is because in simulator generated preambles, there are some values of i for which pi = vi,
whereas that is improbable for the real proof system. Second, the witness used by the
simulator is different than the one used by the real proof system: the simulator proves that
pi = vi, while the real system proves that x ∈ L.

The first observation presents no problem, because if anyone were able to distinguish the
preambles, that would imply breaking a commitment scheme. The second one also presents
no problem, because any zero knowledge proof system is witness indistinguishable too, so
noone can tell which witness was used to prove the theorem.

The full proof can be found in [KPR01], but let us just say here that a hybrid argument is
used, with one hybrid point. The hybrind point is a view generated by a modified simulator

∗
S′V that gets a witness w, to the statement “x ∈ L”, as extra input. It generates preambles
as the usual simulator S, i.e. it tries to solve the proofs by setting vi = pi for some i. But
when it executes the body of the proof, it behaves as the real prover P, and proves that
x ∈ L using w.

∗
Distinguishing the view generated by S′V from that generated by S then implies that

the zero knowledge proof system for L is not witness indistinguishable, which in turn implies
that it is not zero knowledge at all.

∗
On the other hand, distinguishing the view generated by S′V from that generated by
∗(P, V) implies that a commitment scheme is not semantically secure.

21-8

Running Time of the Simulator

It can proven that the number of rewinds is polynomial in the security parameter k. On
the other hand, a polynomial in k number of operations takes place during each rewind.
Hence the simulator runs in polynomial time.

3 Conclusion

log k[CKPR01] prove that Ω(log log k) rounds are needed for black box concurrent zero knowledge
proofs for any language outside BPP. Thus the result of [KPR01] is not far from this lower
bound. However, [PS02] further improve the round complexity of concurrent zero knowledge
by giving an O(log k) round protocol.

References

[CKPR01] R. Canetti, J. Kilian, E. Petrank, A. Rosen. Black-box Concurrent Zero-
Knowledge Requires Omega(log n) Rounds In ACM Symposium on Theory of Com
puting, pp. 570-579, 2001.

[DPP93] I. D̊amgard, T. Pedersen, B. Pfitzmann. On the Existence of Statistically Hiding
Bit Commitment Schemes and Fail-Stop Signatures. Advances in Cryptology - CRYPTO
’93. Proceedings, pp. 250-265. LNCS 773, Berlin: Springer-Verlag, 1994.

[Gol01] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, 2001.

[Gol] O. Goldreich. Foundations of Cryptography - Fragments of a Book Available from
O. Goldreich’s web page: http://www.wisdom.weizmann.ac.il/ oded

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interac-
tive Proof Systems. Proceedings of 17th ACM Symposium on the Theory of Computing
(STOC), pp. 291-304, 1985.

[KP01] J. Kilian, E. Petrank. Concurrent and Resettable Zero-Knowledge in Poly-
logarithmic Rounds Proceedings of the thirty-third annual ACM symposium on Theory
of computing, 2001, pp. 560-569

[KPR01] J. Killian, E. Petrank, R. Richardson. Concurrent Zero-Knowledge Proofs for NP.
Available from E. Petrank’s web page: http://www.cs.technion.ac.il/ erez

[Nao91] M. Naor. Bit Commitment Using Pseudo-Randomness. Journal of Cryptology,
vol.4, 1991, pp. 151-158

[PS02] M. Prabhakaran, A. Sahai. Concurrent Zero Knowledge Proofs with Logarithmic
Round-Complexity. Available from Electric Colloqium on Computational Complexity,
ECCC, 2002. http://citeseer.nj.nec.com/prabhakaran02concurrent.html

21-9

~

~

[RK99] R. Richardson, J. Killian. On the Concurrent Composition of Zero-Knowledge

Proofs. Proceedings of Advances in Cryptology - EUROCRYPT ’99, May 1999, LNCS

Vol. 1592, Springer 1999, pp. 415-431

[Sha90] A. Shamir. IP = PSPACE. Proceedings, 31st Annual IEEE Symposium on Foun-

dations of Computer Science (FOCS), pp. 11-15, 1990.

21-10

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

