
6.890: Algorithmic Lower Bounds Prof. Erik Demaine  
Fall 2014 

Problem Set 2 
Due: Wednesday, October 8th, 2014 

Problem 1. The R&D department of IncompeTech, Inc. has been looking into light-based circuits. 
In their years of research, they’ve developed a single type of gate. The gate takes two inputs — 
each either red light, green light, or blue light — and outputs a single beam of light whose color is 
determined by the following table: 

input 1 

in
p
u
t 
2 

R G B 
R G R B 
G R B R 
B B R G 

IncompeTech’s circuits take the form of a directed acyclic graph in which every node has in-degree 
0 or in-degree 2. There are two types of nodes with in-degree 0: the inputs x1, . . . , xn and the 
constants R, G, and B. The nodes with in-degree 2 represent instances of the gate shown above. 
One such node produces the output (R, G, or B) of the overall circuit. 

The R&D department of IncompeTech has designed several circuits which are supposed to 
be able to output the color red for an appropriate (unknown) selection of inputs, but the QA 
department hasn’t figured out how to test for this. Can this property be checked in polynomial 
time, or is IncompeTech struggling with an NP-hard problem? 

Solution: Let f(·, ·) be the function given by the problem, and define a new function g(x) = 
f(x, x). By examining f , we see that:  

B if x = G 
g(x) =

G otherwise 

Thus, g(x) seems to behave a little bit like a negation: changing G to B and vice versa. So suppose 
that we assign G to be the “true” value and B to be the “false” value. Then our next goal is to 
construct either an AND gate or an OR gate. To make our construction simpler, we can “sanitize” 
our inputs x1, . . . , xn by applying g(g(x)), thus ensuring that the inputs to our AND and OR gates 
will be either G or B, with no need to worry about what happens when R is used. 

To construct the desired gate, we start by examining the function f(x, y) when its inputs are 
restricted to x, y ∈ {G, B}. That table is as follows: 

G B 
G B R 
B R G 

The nice thing about this truth table is that the three cases are nicely differentiated: B if there 
are two Gs, G if there are two Bs, and R if there is one G and one B. The not-so-nice thing is that 
there are three different outputs. But we know that g(x) maps three outputs down to two. So we 
examine the function h(x, y) = g(f(x, y)) = f(f(x, y), f(x, y)): 
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G B 
G G G 
B G B 

This is precisely what we want: if G represents true and B represents false, then h(x, y) is an OR 
gate. This, combined with the NOT gate, allows us to represent arbitrary boolean circuits. 

But we are not quite done: the problem asks whether the output is R, but our “true” value is 
G. To fix this, we add one extra gate at the end of the computation: s(x) = f(R, x). This will 
transform an input of G to R, while leaving an input of B alone. Hence, we can simulate a boolean 
circuit with this tri-valued circuit, thus showing that there is a polynomial-time reduction from 
Circuit-SAT to this problem. Thus, the problem is NP-hard. 

Problem 2. For each of the following planar edge-coloring problems, either show that the problem 
is NP-hard, or show that there exists a polynomial-time algorithm for the problem (e.g., by reducing 
to shortest paths, minimum spanning tree, matching, network flow, etc.). 

(a) Given a 3-regular planar undirected multigraph (allowing parallel edges and self-loops), color 
each edge either red or blue such that, at each vertex, the multiset of colors of the incident 
edges is {R, B, B}. 

Solution: The set of red edges has the property that there is exactly one incident to each 
node. This is precisely the definition of a perfect matching. Hence, we may apply Edmonds’ 
matching algorithm. If the result is a perfect matching, color the edges in the matching red, 
and color all other edges blue. If the result is not a perfect matching, then it is impossible to 
color the graph. 

(b) Given a 3-regular planar undirected multigraph (allowing parallel edges and self-loops), color 
each edge either red or blue such that, at each vertex, the multiset of colors of the incident 
edges is either {R, B, B}, {R, R, R}, or {B, B, B}. 

Solution: This is even easier: just color every edge red. Then every vertex will have 
{R, R, R} as the multiset of its incident edge colors, which is precisely what we wanted. 

(c) Suppose that you are given an planar undirected multigraph (allowing parallel edges and self-
loops) such that each vertex has degree 3 or degree 6. Color each edge either red or blue such 
that, at each vertex, the multiset of colors of the incident edges is either {R, R, B, B, B, B}, 
{B, B, B}, or {R, R, R}. 

Solution: Reduction from planar All-Positive 1-in-3 SAT. Given a variable from the 1-in-3 
SAT instance that appears in k clauses, we construct k − 2 vertices of degree 3, and connect 
them in a chain. Because all of these vertices are connected, the edges they are incident to 
must either be all red, or all blue. The other 3(k − 2) − 2(k − 3) = 3k − 6 − 2k + 6 = k 
connections emanating from these nodes will be used to connect the variable gadget to the 
k clauses that the variable belongs to. Note that this variable gadget is planar (because all 
vertices are arranged in a chain), and all vertices are on the outside face of the gadget, so 
when we replace the variable node from the original graph of clauses and variables, we will 
maintain planarity. 
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To construct a clause gadget, we use two vertices: one of degree 6, and one of degree 3, 
connected to each other by three parallel edges. Because the vertex of degree 6 cannot be 
incident to three red edges, the vertex of degree 3 must be a {B, B, B} vertex. So the 
remaining three edges emerging from the clause gadget must be {R, R, B} — exactly one 
of them must be blue. Hence, if we connect our clause gadgets to our variable gadgets as 
specified by the original planar 1-in-3 SAT problem, we know that the resulting graph can be 
colored in this way if and only if the original 1-in-3 SAT problem is satisfiable. Furthermore, 
it is plain to see that this graph is planar. We have already seen that the graph remains 
planar when each variable node is replaced with a chain of nodes of degree 3, and our clause 
gadget consists of adding one neighbor to the original clause node, which can be done by 
placing the neighbor in one of the adjacent faces. Hence, the problem is NP-hard for planar 
graphs. 

Problem 3. Suppose that you are given an arbitrary planar graph, and a subset Q ⊆ V of the 
vertices in the graph labeled “exactly 3 blue”. Let N(v) denote the set of neighbors of a vertex v. 
We want to color each vertex in the graph either red or blue such that, if we examine a vertex v 
labeled “exactly 3 blue”, the number of blue nodes among {v} ∪ N(V ) is exactly 3. (Unlabeled 
vertices are unconstrained.) Can this problem be solved in polynomial time, or is it NP-hard? 

Solution: Reduction from Planar All-Positive 1-in-3 SAT. Start with the graph of clauses and 
variables. For each clause Ci, add a single neighboring vertex si, and add a third vertex ti that is 
connected to si by an edge (si, ti). (Note that this can be done without changing the planarity of 
the graph by placing both added nodes in one of the faces adjacent to the clause node.) Label both 
si and Ci with “exactly 3 blue”. By construction, there are exactly three nodes in {si} ∪ N(si): 
si, ti, and Ci. Hence, all three nodes must be blue. This means that, in {Ci} ∪ N(si), we know 
that there are exactly two non-variable nodes, both of which are blue: Ci and si. So exactly one 
of vertices incident to the clause must be blue. By using blue to represent the value of true, this 
ensures that we have correctly encapsulated the 1-in-3 SAT constraint. 

Problem 4. Graduating is Hard, or: Why Does 6.890 Conflict With So Many Things? 
Students at the Miskatonic Institute of Technology sometimes find it hard to figure out whether 
they will graduate on time. The Institute has a set C of classes it offers, though not all classes are 
taught every semester. To graduate with a specific major, you must complete all of the courses 
required for that major. The courses you can take may also have additional restrictions, such as 
conflicts or prerequisites, described below. 

(a) The major in Computational Metaphysics simply requires completing a specific set of required 
courses. Each course c ∈ C is offered in a certain set of semesters Sc. In each semester i, 
certain pairs of classes conflict, as given by an undirected graph (C, Xi). In each semester, you 
can take any set of classes that are offered during that semester and have no pairwise conflicts. 
Prove that it is NP-hard to decide whether you can graduate with a major in Computational 
Metaphysics. 

Solution: Reduction from 3-SAT. We create one class per variable and one class per clause, 
which are all required. Each variable class vi is held in two semesters, 2i − 1 and 2i, rep
resenting true and false respectively. Clause classes ci are held during the three semesters 
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corresponding to the negation of the literals they contain, and conflict with the variable class 
in that semester (but not with other clause classes). 
Suppose that we have a satisfying assignment, and wish to convert that to a schedule. For 
each variable xi = T , take the corresponding variable class vi during semester 2i−1. For each 
variable xi = F , take the corresponding variable class vi during semester 2i. For each clause, 
we know that there is at least one literal in the clause that is set to true; therefore, at least 
one of the negations of the three literals must be false, and there will be no variable class 
during the semester corresponding to that literal. This allows us to take the corresponding 
clause class during that semester. 
Conversely, suppose that we have a schedule that allows us to graduate. We can convert it 
to an assignment by setting xi = T if and only if vi is held during semester 2i − 1. The 
clause class ci must be scheduled during one of the three semesters it is offered. Suppose 
that chose to take it during some semester 2j − 1. Then, because it conflicts with all variable 
classes, we could not have taken vj in the same semester, which means that xi = F in our 
assignment. The fact that ci was scheduled during semester 2j − 1 in the first place means 
that the corresponding clause contains the literal xj , so the clause will be satisfied. A similar 
argument applies if we were able to take the clause class during some semester 2j. 

(b) You notice that none of the classes required for a major in Eldritch Lore ever have conflicts 
with each other. However, due to the nature of the material, students are restricted to taking 
no more than four courses in any given semester. As before, each course c ∈ C is offered 
in a set of semesters Sc. In addition, each course c ∈ C has a prerequisite list Pc ⊆ C. A 
student must have taken all of the prerequisites in Pc before they can take c. The graph of 
prerequisites form a (potentially disconnected) directed acyclic graph over the courses. Each 
course c ∈ C also has a list of courses Rc which can be used as substitutions for c, which fulfill 
all the prerequisite and major requirements that c does. Prove that it is NP-hard to decide 
whether you can graduate with a major in Eldritch Lore. 

Solution: Once again we reduce from 3SAT. Each clause is represented by a required course 
in the major. The clauses have three possible substitutions, so we only need to take one of 
those classes to satisfy the clause. Each of the substitutions represents a literal and has it’s 
corresponding variable course as a prerequisite. Each variable is represented by two courses, 
one for true and one for false. Each of these has four prerequisites, all eight of which are 
only offered in a single semester. This ensures that one can only fulfill the prerequisites for 
either the true or the false instance of the variable. Variable courses are not required (except 
as prerequisites for the clause courses), and have no substitutions. The variables prerequisite 
semesters are all offered sequentially, followed by the variables, and finally the literals. 

Problem 5. An ε-imperfect 2-coloring is a 2-coloring of an undirected graph in which no more 
than an ε fraction of the edges have endpoints of the same color. Show that it is NP-complete to 
find an ε-imperfect 2-coloring for some constant ε strictly between 0 and 1 (i.e., ε cannot have any 
dependence on the input but can be whatever constant you want other than 0 or 1). 

Solution: We reduce from Monotone NAE-SAT where every clause has exactly 3 variables, all 
3 of which are unique. We let ε equal 16 . We represent each clause by three nodes connected in a 
triangle. Thus if all three nodes are the same color we have three monochromatic edges; however, 
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if only two nodes are the same color we will only have one monochromatic edge. Next, we create 
a node for every variable and connect it to every node representing an instance of that variable. If 
any of the literals are the same color as the variable it creates a monochromatic edge. The number 
of edges in this graph is exactly six times the number of clauses. The graph must contain at least 
one monochromatic edge in each clause. Thus the graph is only 1 -imperfect 2-colorable if no other 6 
edges are monochromatic. This can only occur if all variable nodes are the opposite color of their 
literals, and thus all the literal are the same color, and if all the clauses have two different colors 
in them. We pick one color to be true and one to be false, when translating to NAE-SAT. 
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