
Overview

Work-stealing scheduler
O(pS1) worst case space
small overhead

Narlikar scheduler1

O(S1+pKT∞) worst case space
large overhead

Hybrid scheduler
Idea: combine space saving ideas from Narlikar with
the work-stealing scheduler

1. Girija J. Narlikar and Guy E. Blelloch. Space-Efficient Scheduling of Nested Parallelism.
ACM Transactions on Programming Languages and Systems (TOPLAS), 21(1), January, 1999.

What We Did

Implemented Narlikar Scheduler for Cilk
Replaced WS scheduling code
Modified cilk2c

Designed WS-Narlikar Hybrid Scheduler
Implemented Hybrid Scheduler

Modified WS scheduling code
Modified cilk2c

Performed empirical tests for space and time
comparisons

Results

Data from running the modified fib program on 16 processors

Space (Kb) Ratio
(scheduler/Cilk WS)

Time (sec) Ratio
(scheduler/Cilk WS)

Cilk WS 491520 1.00 1.8 1.0
Narlikar 204800 0.41 837.0 465.0
Hybrid 368640 0.75 2.3 1.3

Hybrid retains some of the space saving
benefits of Narlikar with a much smaller
overhead.

Outline

I. Example
II. Narlikar Algorithm

a. Description
b. Overheads/Bottlenecks

III. Hybrid Algorithm
a. Motivation
b. Description

IV. Empirical Results
V. Future Work
VI. Conclusions

Example

main() {
for(i = 1 to n)

spawn F(i, n);
}

F(int i, int n) {
Temp B[n];
for(j = 1 to n)

spawn G(i, j, n);
}

Schedule 1

Schedule outer parallelism first

Memory used (heap): θ(n2)

Similar to work-stealing scheduler
(θ(pn) space)

Green nodes are executed before
white nodes

Schedule 2

Schedule inner parallelism first

Memory used (heap): θ(n)

Similar to Narlikar scheduler
(θ(n+ pKT∞) = θ(n) space)

Green nodes are executed before
white nodes

Narlikar Algorithm - Idea

Perform a p-leftmost execution of the DAG

p-depth first execution for p = 2

Narlikar Data Structures

…

Qout

R
Processors

increasing thread
order

Qin

Qin, Qout are FIFO queues that support parallel accesses
R is a priority queue that maintains the depth first order of
all threads in the system

Narlikar – Thread Life Cycle

A processor executes a thread until:
spawn
memory allocation
return

Processor puts thread in Qin, gets new thread from Qout

Scheduler thread moves threads from Qin to R, performs
spawns, moves the leftmost p to Qout

…

Qout

Qin

R
Processors

Narlikar – Memory Allocation

“Voodoo” parameter K
If a thread wants to allocate more than K
bytes, preempt it
To allocate M, where M > K, put thread to
sleep for M/K scheduling rounds.

…

Qout

Qin

R
Processors

Problems with Narlikar

Large scheduling overhead (can be more than
400 times slower than the WS scheduler)

Bad locality: must preempt on every spawn
Contention on global data structures
Bookkeeping performed by scheduling thread
Wasted processor time (bad scalability)

As of yet, haven’t performed empirical tests
to determine a breakdown of overhead

Hybrid Scheduler Idea

Keeping track of left-to-right ordering is
expensive
What about just delaying the threads that
wish to perform large memory allocations?
Can we achieve some space efficiency with a
greedy scheduler biased toward non-memory
intensive threads?

Hybrid Algorithm

Start with randomized Work-stealing
scheduler
Preempt threads that perform large memory
allocations and put them to sleep
Reactivate sleeping threads when work-
stealing

Hybrid Algorithm
current_time: 0

Deque Processor Sleep Queue

wake_time: - wake_time: 1

wake_time: 2

wake_time: 5

wake_time: 5

wake_time: 8

per processor global

Hybrid Algorithm
current_time: 0

Deque Processor Sleep Queue

wake_time: - wake_time: 1

wake_time: 2

wake_time: 5

wake_time: 5
Get thread from bottom of deque

wake_time: 8

Hybrid Algorithm
current_time: 0

Deque Processor Sleep Queue

wake_time: - wake_time: 1

wake_time: 2

wake_time: 5

wake_time: 5
Get thread from bottom of deque
Before malloc(size),
sleep_rounds = f(size+current_allocation)

wake_time: 8

Hybrid Algorithm
current_time: 0

Deque Processor Sleep Queue

wake_time: 4 wake_time: 1

wake_time: 2

wake_time: 5

wake_time: 5
Get thread from bottom of deque
Before malloc(size),
sleep_rounds = f(size+current_allocation)

If sleep_rounds > 0,
wake_time = sleep_rounds + current_time

wake_time: 8

Hybrid Algorithm
current_time: 0

Deque Processor Sleep Queue

wake_time: 4 wake_time: 1

wake_time: 2

wake_time: 5

wake_time: 5

wake_time: 8

Get thread from bottom of deque
Before malloc(size),
sleep_rounds = f(size+current_allocation)

If sleep_rounds > 0,
wake_time = sleep_rounds + current_time
and insert thread into sleep queue

Hybrid Algorithm
current_time: 0

Deque Processor Sleep Queue

wake_time: 1

wake_time: 2

wake_time: 4

wake_time: 5
Get thread from bottom of deque
Before malloc(size),
sleep_rounds = f(size+current_allocated)

If sleep_rounds > 0,
wake_time = sleep_rounds + current_time
and insert thread into sleep queue

wake_time: 5

wake_time: 8

Hybrid Algorithm
current_time: 0

Deque Processor Sleep Queue

wake_time: 1

wake_time: 2

wake_time: 4

wake_time: 5
If no threads on deque,

increment current_time
wake_time: 5

wake_time: 8

Hybrid Algorithm
current_time: 1

Deque Processor Sleep Queue

wake_time: 1

wake_time: 2

wake_time: 4

wake_time: 5
If no threads on deque,

increment current_time
wake_time: 5

wake_time: 8

Hybrid Algorithm
current_time: 1

Deque Processor Sleep Queue

wake_time: 1

wake_time: 2

wake_time: 4

wake_time: 5
If no threads on deque,

increment current_time
if first thread in Sleep Queue is ready,

get thread from Sleep Queue

wake_time: 5

wake_time: 8

Hybrid Algorithm
current_time: 1

Deque Processor Sleep Queue

wake_time: 1 wake_time: 2

wake_time: 4

wake_time: 5

wake_time: 5
If no threads on deque,

increment current_time
if first thread in Sleep Queue is ready,

get thread from Sleep Queue

wake_time: 8

Hybrid Algorithm
current_time: 1

Deque Processor Sleep Queue

wake_time: - wake_time: 2

wake_time: 4

wake_time: 5

wake_time: 5
If no threads on deque,

increment current_time
if first thread in Sleep Queue is ready,

get thread from Sleep Queue
reset wake_time and current_allocated
execute it

wake_time: 8

Hybrid Algorithm
current_time: 1

Deque Processor Sleep Queue

wake_time: - wake_time: 2

wake_time: 4

wake_time: 5

wake_time: 5
If no threads on deque,

increment current_time
if first thread in Sleep Queue is ready,

get thread from Sleep Queue
reset wake_time and current_allocated
execute it

otherwise, work-steal

wake_time: 8

How long to Sleep?

Want sleep time to be proportional to the size
of the memory allocation
Increment time on every work-steal attempt
Scale with number of processors
Place for future improvement?

Current function

sleep_rounds = floor(size/(α+β*p))

α and β are “voodoo” parameters

Empirical Results

Peak Memory Usage

0

100000

200000

300000

400000

500000

600000

700000

Number of Processors

Pe
ak

 M
em

or
y

U
sa

ge
 in

 K
B

Cilk

Hybrid

Narlikar

Cilk 163840 327680 409600 491520 614400

Hybrid 163840 327680 327680 368640 368640

Narlikar 163840 163840 204800 204800

4 8 12 16 32

Empirical Results
Running Time

0
100
200

300
400
500
600
700

800
900

1000

Number of Processors

Ti
m

e
in

 S
ec

on
ds

Cilk

Hybrid

Narlikar

Cilk 6.3 3.2 2.3 1.8 1.8

Hybrid 7.8 4.5 2.6 2.3 2.2

Narlikar 937 878 855 837

4 8 12 16 32

Future Work on Hybrid Scheduler

Find the best sleep function and values for
“voodoo” parameters
Optimize the implementation to reduce
scheduling overhead
Determine theoretical space bound
More detailed empirical analysis

Conclusions

Narlikar scheduler provides a provably good
space bound but incurs a large scheduling
overhead
It appears that it is possible to achieve space
usage that scales well with the number of
processors while retaining much of the
efficiency of work-stealing

	Overview
	What We Did
	Results
	Outline
	Example
	Narlikar Algorithm - Idea
	Narlikar Data Structures
	Narlikar – Thread Life Cycle
	Narlikar – Memory Allocation
	Problems with Narlikar
	Hybrid Scheduler Idea
	Hybrid Algorithm
	Hybrid Algorithm
	Hybrid Algorithm
	Hybrid Algorithm
	Hybrid Algorithm
	Hybrid Algorithm
	Hybrid Algorithm
	Hybrid Algorithm
	Hybrid Algorithm
	Hybrid Algorithm
	Hybrid Algorithm
	How long to Sleep?
	Empirical Results
	Empirical Results
	Future Work on Hybrid Scheduler
	Conclusions

