
Parallelizing METIS

A Graph Partitioning Algorithm

Zardosht Kasheff

Sample Graph

●	 Goal: Partition graph into
n equally weighted
subsets such that edge cut
is minimized

●	 Edge-cut: Sum of weights
of edges whose nodes lie
in different partitions

●	 Partition weight: Sum of
weight of nodes of a
given partition.

METIS Algorithm

95% of runtime is spent on Coarsening and Refinement

Graph Representation

All data stored in arrays
- xadj holds pointers to adjncy and adjwgt

that hold connected nodes and edge
weights

- for j, such that xadj[i] <= j < xadj[i+1]:
adjncy[j] is connected to i,
adjwgt[j] is weight of edge connecting
i,j

Coarsening Algorithm

Coarsening: Writing Coarse Graph

Issue: Data Represention

Coarsening: Writing Coarse Graph

Issue: Data Represention

Before:

for j, such that

xadj[i] <= j < xadj[i+1]:

adjncy[j] connected to i.

After:

for j, such that

xadj[2i] <= j < xadj[2i+1]:

adjncy[j] connected to i.

Coarsening: Writing Coarse Graph

Issue: Data Represention

●	 Now, only need upper bound on number of edges
per new vertex
–	 If match(i,j) map to k, then k has at most |edges(i)| +

|edges(j)|
–	 Runtime of preprocessing xadj only O(|V|).

Coarsening: Writing Coarse Graph

Issue: Data writing

●	 Writing coarser graph involves writing massive
amounts of data to memory
–	 T1 = O(|E|)
–	 T∞ = O(lg |E|)
–	 Despite parallelism, little speedup

Coarsening: Writing Coarse Graph

Issue: Data writing

Example of filling in array:

Cilkvoidfill(int*array,intval,intlen){

if(len <= (1<<18)){

memset(array,val,len*4);

}else{

/************RECURSE************/

}

}

enum {N = 200000000 };

int main(intargc,char*argv[]){

x =(int*)malloc(N*sizeof(int));

mt_fill(context,x,25, N);gettimeofday(&t2);print_tdiff(&t2,&t1);

mt_fill(context,x,25, N);gettimeofday(&t3);print_tdiff(&t3,&t2);

}

Coarsening: Writing Coarse Graph

Issue: Data writing

● Parallelism increases on second fill
After first malloc, we fill array of length 2*10^8 with 0's:

1 proc: 6.94s
2 proc: 5.8s speedup: 1.19
4 proc: 5.3s speedup: 1.30
8 proc: 5.45s speedup: 1.27
Then we fill array with 1's:

1 proc: 3.65s
2 proc: 2.8s speedup: 1.30
4 proc: 1.6s speedup: 2.28
8 proc: 1.25s speedup: 2.92

Coarsening: Writing Coarse Graph

Issue: Data writing

● Memory Allocation
–	 Default policy is First Touch:

●	 Process that first touches a page of memory causes that
page to be allocated in node on which process runs

Result:

Memory Contention

Coarsening: Writing Coarse Graph

Issue: Data writing

● Memory Allocation
– Better policy is Round Robin:

● Data is allocated in round robin fashion.

Result:

More total work but less

memory contention.

Coarsening: Writing Coarse Graph

Issue: Data writing

● Parallelism with round robin placement on ygg.
After first malloc, we fill array of length 2*10^8 with 0's:

1 proc: 6.94s 1 proc: 6.9s
2 proc: 5.8s speedup: 1.19 2 proc: 6.2s speedup: 1.11
4 proc: 5.3s speedup: 1.30 4 proc: 6.5s speedup: 1.06
8 proc: 5.45s speedup: 1.27 8 proc: 6.6s speedup: 1.04
Then we fill array with 1's:

1 proc: 3.65s 1 proc: 4.0s
2 proc: 2.8s speedup: 1.3 2 proc: 2.6s speedup: 1.54
4 proc: 1.6s speedup: 2.28 4 proc: 1.3s speedup: 3.08
8 proc: 1.25s speedup: 2.92 8 proc: .79s speedup: 5.06

Coarsening: Matching

Coarsening: Matching

Phase: Finding matching

●	 Can use divide and conquer
–	 For each vertex:
if(node u unmatched){

find unmatched adjacentnode v;

match[u]= v;

match[v]= u;

}

–	 Issue: Determinacy races. What if nodes i,j both try to
match k?

–	 Solution: We do not care. Later check for all u, if
match[match[u]] = u. If not, then set match[u] = u.

Coarsening: Matching

Phase: Finding mapping

●	 Serial code assigns mapping in order matchings
occur. So for:

Matchings occurred in following order:

1) (6,7)

2) (1,2)

3) (8,8) /*although impossible in serial code, error caught in last minute*/

4) (0,3)

5) (4,5)

Coarsening: Matching

Phase: Finding mapping

●	 Parallel code cannot assign mapping in such a
manner without a central lock:
–	 For each vertex:

if(node u unmatched){

find unmatched adjacent node v;

LOCKVAR;

match[u] = v;

match[v] = u;

cmap[u]=cmap[v]=num;

num++;

UNLOCK;

}

– This causes bottleneck and limits parallelism.

Coarsening: Matching

Phase: Finding mapping

● Instead, can do variant on parallel-prefix
– Initially, let cmap[i] = 1 if match[i] >= i, -1 otherwise:

- Run prefix on all elements not -1:

Coarsening: Matching

Phase: Finding mapping

– Correct all elements that are -1:

–	 We do this last step after the parallel prefix to fill in
values for cmap sequentially at all times. Combining
the last step with parallel-prefix leads to false sharing.

Coarsening: Matching

Phase: Parallel Prefix

– T1 = 2N
– Tinfinity∞ = 2 lg N where N is length of array.

Coarsening: Matching

Phase: Mapping/Preprocessing xadj

● Can now describe mapping algorithm in stages:
– First Pass:

● For all i, if match[match[i]] != i, set match[i] = i
● Do first pass of parallel prefix as described before

– Second Pass:
● Set cmap[i] if i <= match[i],
● set numedges[cmap[i]] = edges[i] + edges[match[i]]

– Third Pass:
● Set cmap[i] if i > match[i]

● Variables in blue mark probable cache misses.

Coarsening: Preliminary Timing

Results

On 1200x1200 grid, first level coarsening:

Serial:
Matching: .4s
Writing Graph: 1.2s

Parallel:
1proc: 2 proc 4 proc 8 proc
memsetting for matching: .17s
matching: .42s .23s .16s .11s
mapping: .50s .31s .17s .16s
memsetting for writing: .44s
coarsening: 1.2s .71s .44s .24s

Round Robin Placement:
1proc: 2 proc 4 proc 8 proc
memsetting for matching: .20s
matching: .51s .27s .16s .09s
mapping: .64s .35s .20s .13s
memsetting for writing: .52s
coarsening: 1.42s .75s .39s .20s

	Parallelizing METIS
	Sample Graph
	METIS Algorithm
	Graph Representation
	Coarsening Algorithm
	Coarsening: Writing Coarse GraphIssue: Data Represention
	Coarsening: Writing Coarse GraphIssue: Data Represention
	Coarsening: Writing Coarse GraphIssue: Data Represention
	Coarsening: Writing Coarse GraphIssue: Data writing
	Coarsening: Writing Coarse GraphIssue: Data writing
	Coarsening: Writing Coarse GraphIssue: Data writing
	Coarsening: Writing Coarse GraphIssue: Data writing
	Coarsening: Writing Coarse GraphIssue: Data writing
	Coarsening: Writing Coarse GraphIssue: Data writing
	Coarsening: Matching
	Coarsening: MatchingPhase: Finding matching
	Coarsening: MatchingPhase: Finding mapping
	Coarsening: MatchingPhase: Finding mapping
	Coarsening: MatchingPhase: Finding mapping
	Coarsening: MatchingPhase: Finding mapping
	Coarsening: MatchingPhase: Parallel Prefix
	Coarsening: MatchingPhase: Mapping/Preprocessing xadj
	Coarsening: Preliminary Timing Results

