
Parallel Nondeterminator

He Yuxiong and Wang Junqing

Singapore-MIT Alliance

A report submitted for the course

MIT 6.895/SMA 5504 Theory of Parallel Systems

Abstract

Detecting data race is very important for debugging shared-memory parallel programs,

because data races result in unintended nondeterministic execution of the program. We

propose a dynamic on-the-fly race detection mechanism called Parallel Nondeterminator

to check for determinacy races during the parallel execution of a program with recursive

spawn-sync parallelism. A modified version of Nested Region Labeling scheme is devel-

oped for the concurrency relationship test in the spawn-sync parallel structure. Through

the identification of Least Common Ancestor in the spawn tree, the Parallel Nondeter-

minator only needs to keep two read access records and one write access record for each

shared location. The work and critical path in the instrumented codes are analyzed as

well as time complexity and space requirements. Let N denote the maximum depth of

the recursion in the parallel program. The worst case time increased for each spawn

operation is O(N) and for each sync operation is O(1). The time required to monitor

any shared memory location is O(lgN). Moreover, the Parallel Nondeterminator shows

good performance in the simulation. In summary, the Parallel Non-determinator rep-

resents a provably efficient strategy for detecting data races for shared-memory parallel

programs.

Contents

1 INTRODUCTION 1

2 MNR LABELING ALGORITHM 3

2.1 Cilk Program and its POEG . 4

2.2 Properties of Cilk POEG . 6

2.3 MNR Labeling Algorithm . 7

2.3.1 Notations in Algorithm . 7

2.3.2 Algorithm . 9

2.3.3 An example of MNR labeling . 10

2.3.4 An Issue on Label Extension . 12

2.4 Correctness Proof of MNR Labeling Algorithm . 12

2.4.1 Basic Properties of MNR Labeling Algorithm 12

2.4.2 Correctness Proof of MNR labeling Algorithm 14

2.5 Left-of relation . 20

3 ALGORITHM FOR ACCESS MONITORING AND RACE DETECTION 23

3.1 Algorithm . 24

3.2 Race Detection Correctness Proof . 24

4 PERFORMANCE ANALYSIS 28

5 SIMULATION AND PERFORMANCE EVALUATION 30

5.1 Simulation . 30

5.1.1 Simulation Program Generator . 30

5.1.2 Nondeterminator Runtime Library . 35

5.2 Performance Evaluation . 35

5.2.1 Correctness Testing . 35

i

CONTENTS ii

5.2.2 Effectiveness Testing . 37

5.2.3 Testing summary . 44

6 CONCLUSIONS 45

References 46

List of Figures

2.1 The Graph of Cilk POEG Unit . 4

2.2 Example of the Cilk POEG and MNR Labeling Algorithm 11

2.3 The Transform of Cilk POEG Unit from N-Spawn Gn to (N+1)-Spawn Gn+1 15

5.1 Sample specification file of Parallel nondeterminator 31

5.2 Sample outputs of Parallel nondeterminator and Cilk Nondeterminator 36

5.3 Sample Cilk Program with Parallel nondeterminator and potential data race 36

5.4 Sample execution time of Cilk program with parallel nondeterminator 37

5.5 Performance ratios with change of recursion depth 39

5.6 Performance ratios with change of calculation delay 41

5.7 Bad case of the overhead on lock/unlock operations 43

iii

Chapter 1

INTRODUCTION

Shared-memory parallel programs are often designed to be deterministic, both in their final results

and intermediate states. But debugging such programs requires a mechanism for locating race

conditions. Data race occurs when two concurrent execution threads access the same memory

location and at least one access is a write to the location.

Three principal strategies have been proposed in previous research for detecting data races: static

analysis, post-mortem analysis, and on-the-fly analysis [5-8]. The static technique intends to report

all potential access anomalies during the parallel execution. Its drawback is that too many false

positive errors are reported. Post-mortem records the log for reading and writing occurred in the

program’s execution and tries to find the access anomaly from them. For a large parallel program,

the size of the log is likely to be very large. Thus, we propose a dynamic on-the-fly race detection

mechanism called Parallel Nondeterminator to check for determinacy races during the parallel

execution of a program with recursive spawn-sync parallelism.

The proposed Parallel Nondeterminator checks for determinacy races during the parallel execution

of a program with recursive spawn-sync parallelism. It guarantees the race is detected in location L

if and only if a determinacy race exists in location L. The efficiency of the race detection algorithm

mainly depends on two aspects - how quickly the test of concurrency can be made among the

threads and how many entries for each shared variable are required in the access history. In our

Parallel Nondeterminator, we present a modified Nested Region (MNR) Labeling algorithm to test

the concurrency relationship among the threads in the Cilk program execution. Through combining

the features of MNR labeling and the concept of Least Common Ancestor in spawn-sync tree, we

prove that keeping only two read and one write access records for each shared variable is sufficient

1

2

for correct race detection. In the time and space complexity analysis of the algorithm, we show

that it gives provably good performance for the race detection of parallel programs written in Cilk.

The report has been organized into the following sections. Section 1 to 4 was prepared by He

Yuxiong and section 5 to 6 was prepared by Wang Junqing.

• Chapter 2: MNR labeling algorithm for concurrency test

• Chapter 3: Algorithm for access monitoring and race detection

• Chapter 4: Performance analysis

• Chapter 5: Simulation and Performance Evaluation

• Chapter 6: Conclusion

Chapter 2

MNR LABELING ALGORITHM

This section introduces MNR labeling algorithm and prove its correctness on the determination of

the currency relationship among threads in the Cilk programs. The basic idea of MNR labeling is

to assign each thread with an unique label and decide the concurrency relationship between any

two threads by comparing their corresponding labels. The main challenge is to find out a correct

and efficient approach to maintain and compare the labels.

MNR labeling algorithm adopts the idea of nested region in NR labeling scheme, which was devel-

oped by Y.K. Jun and K. Koh and used for Fork-Join structure in Parallel FORTRAN [1]. Our

MNR labeling algorithm has several significant modifications and improvements compared with the

NR labeling scheme:

1) NR labeling scheme can’t be applied to Cilk structure directly. MNR was developed to have

a good match with Cilk program structure.

2) The key theorem in NR labeling is incorrect, its proof is incorrect either. Here we give a

systematic proof on the correctness of MNR labeling algorithm.

3) MNR labeling has improved performance compared with NR labeling scheme.

In this section, we will first describe the definition and properties of Cilk POEG which is the high-

level program run-time structure MNR labeling is applied to. Then we will introduce the MNR

labeling algorithm and show one example on the labeling scheme.

3

2.1 Cilk Program and its POEG 4

2.1 Cilk Program and its POEG

MNR labeling is applied in Partial Order Execution Graph (POEG) of the parallel program. POEG

is a graph to represent the execution relationship among the threads. Each vertex of POEG

stands for a task operation - spawn or sync, and each edge stands for a thread starting from the

corresponding task operation.

Before formally defining Cilk POEG, we define some useful notations. In a POEG G = (V, E), two

threads x and y (x ∈ E, y ∈ E and x �= y) have relation x→y iff there is a directed path from x to

y along edges in E. Similarly x||y ≡ ¬(x→y) ∧ ¬(y→x) is true iff there is no directed path from x

to y or from y to x along edges in E.

Definition 1 defines the Cilk POEG unit, while definition 2 gives a constructive definition on the

Cilk POEG in terms of the series and recursive composition of Cilk POEG units.

Definition 1 (Cilk POEG unit) A Cilk POEG unit is the basic construct of Cilk POEG G =

(V, E), it has

• One source vertex

• One sink vertex

• Zero or more spawn vertices

• One sync vertex after all the spawn vertices if the number of spawn vertex is not zero

• Merge sync vertex and sink vertex if sync vertex exists

• Edges corresponding to the threads in Cilk program

Figure 2.1: The Graph of Cilk POEG Unit

5 2.1 Cilk Program and its POEG

The Cilk POEG unit corresponds to a Cilk program

•	 It has only one sync operation in each function and the sync operation happens after all the

spawn operations in the function.

•	 Its maximum recursive depth is equal to 1.

Inside a Cilk POEG unit, the thread between the spawn 1 operation and sync operation represents

a basic function. A basic function in POEG is a function represented by single thread. For example,

F2 and F3 are basic functions, while F1 is not.

Definition 2 (Cilk POEG: Constructive definition of Cilk POEG) Cilk POEG is the re-

cursive composition of the series of Cilk POEG units.

Series of Cilk POEG units is the series composition of Cilk POEG units with the extended sink

nodes. Let’s say G1, G2...Gk are Cilk POEG units, the series of Cilk POEG units is a new Cilk

POEG G(V, E). It is constructed by linking G1, G2 to Gk in series through merging vertices Vsnki

with Vsrci+1 (i = 1, 2..k − 1) and adding Vsnk with a new edge (Vsnkk
, Vsnk).

Recursive composition is to replace the basic function F with the series of Cilk POEG units

Gs by merging the spawn operation of the function with the source of Gs and merging the sync

operation of the function with the sink of Gs. The action of replacement is called expanding the

basic function F . We denote the expanded function as G(F).

Terms extended from the basic definition of Cilk POEG and the context of Cilk language:

•	 Function Fp is said to be the parent of function Fc if Fc is spawned directly from Fp . It is

saying that Fc is a child of Fp . Similarly the ancestor and descendant of a function are

also based on the spawn relation.

•	 Initial thread of a function is the thread connecting to the spawn operation of the parent

of the function. The initial thread of the main function is the edge connecting to Vsrc of the

POEG. Return thread of a function is the thread edge connecting to the sync operation

of its parent. Return thread of main function is the edge connecting to Vsnk of the POEG.

Basic function has only one thread which is both the initial and return thread of a function.

Sync thread of a function is the thread edge connecting to sync operation Vsync.

{

2.2 Properties of Cilk POEG	 6

•	 Sub-graph G(F) of a function F is the union of the edges (threads) and the vertices (opera-

tions) in the function F and all of its descendant functions. Initial and return thread of G(F)

are equivalent to the initial and return thread of F.

•	 F (T) represents the function which has the thread T .

2.2 Properties of Cilk POEG

This section shows the basic properties of Cilk POEG. These properties can be derived through

simple observations of Cilk POEG. They are helpful in the correctness proof of MNR labeling

algorithm

Property 1 (Property of Cilk POEG) After we expand on a basic function F , G(F) denotes

the sub-graph of the expanded function F , two threads Ti and Tj , Ti / ∈ G(F) , Ti∈ G(F) and Tj /

and Tj has the concurrency relationship

NR(Ti)→NR(Tx) if Ti→Tj before expanding
NR(Ti)||NR(Tx) if Ti||Tj before expanding

Property 2 (Property of Sub-graph Internal Path) Given Ti and Tj are two threads, G(F)

is the sub-graph of F , Ti ∈ G(F) ∧ Tj ∈ G(F), Ti → Tj , the directed path from Ti to Tj does not

pass through any thread outside the G(F).

Property 3 (Property of Sub-graph External Path) Given G(F) is the sub-graph of the func-

tion F , suppose Ti /∈ G(F) ∧ Tj ∈ G(F) . If Ti → Tj , the directed path from Ti to Tj go through

the initial thread of G(F). If Tj → Ti , the directed path from Tj to Ti go through the return thread

of G(F).

Property 4 (Property of Sub-graph initial and return thread) Given thread Ti in the sub-

graph G(F) of a function F , Ti is neither initial(F) nor return(F), then

(initial(F)→Ti) ∧ (Ti→return(F))

Property 5 (Property of Functional Relationship) Given two different functions Fi and Fj

, there are only three kinds of relationships between them in Cilk POEG structure:

1) Fi is serial to Fj iff the return thread of Fi happens before the initial thread of Fj

2.3 MNR Labeling Algorithm	 7

2) Fi is parallel with Fj

Given any two threads Ti and Tj , Ti ∈ Fi ∧ Tj ∈ Fj

Fi||Fj =⇒ Ti||Tj

3) Fi is an ancestor or descendant of Fj

2.3 MNR Labeling Algorithm

MNR labeling algorithm is illustrated in this section. Before the algorithm, some basic notations

used in the algorithm are explained as below.

2.3.1 Notations in Algorithm

They are three types of notations: label notations, relationship notations and other notations used

in the MNR labeling algorithm

Label notations are the symbols used in the label of the thread.

Label Notations:

•	 T is a thread

•	 NR(T) is the basic NR label of the thread T , which is represented as a pair 〈α, β〉 and α ≤ β.

It is also called by the nested range of the thread.

•	 λ is the sync counter which represent the number of the sync threads of T in the critical

path from initial thread to T . If T is a sync thread, the number includes T .

•	 NRλ(T) is a pair of λ and NR(T) , which is represented as [λ, 〈α, β〉]
•	 r is the recursive depth of thread plus one

•	 NR+

λ
(T) is to denote [r,NRλ(T)]

Take an example in figure 2.2 in section 2.3.4:

The label of T1 is NR+

λ
(T1) = [1, 1, 〈1, 50〉]. The parameters involved are α1, β1, λ1 and r1.

α1 = 1, β1 = 50, λ1 = 1, r1 = 1

The basic label of T1 is NR(T1) = 〈1, 50〉

Relationship notations represent the relationship of two labels.

Relationship Notations

•	 NR(Ti)
NR(Tj) ≡ (αi ≤ αj ∧ βj ≤ βi) ∨ (αj ≤ αi ∧ βi ≤ βj) Include Relation

8 2.3 MNR Labeling Algorithm

•	 NR(Ti)�NR(Tj) ≡ (αi ≤ βj ∧ αj ≤ βi) Overlap Relation

•	 NR(Ti)NR(Tj) ≡ (αi > βj ∨ αj > βi) Disjoint Relation

Other Notations

•	 Pn(T) is the scale of basic label calculated by β − α + 1

•	 RD(T) returns the recursive depth of the thread T plus one, which is equal to r

•	 RD(F) returns the recursive depth of the function F plus one

•	 NR(F) denotes the nested range of a function F. NR(F) = NR(T) where T is the initial

thread of the function F .

•	 IX represents the access interleaving for a shared variable X by threads whose run-time G

concurrency relationship is modeled by a Cilk POEG G = (V, E). IX consists of a total-G

ordered sequence of accesses on X.

Definition 3 (One-way root history) The one-way root history, denoted by OH(Ti), is an or-

dered list of NRλ(Tx) in an ascending order of λx , where Tx is a one-way root of Ti . A one-way

root of Ti is the most recent sync thread happening before Ti in each level of its ancestor functions

or F (Ti). OH(Ti) stores one-way roots with total number less than or equal to RD(Ti). If T is a

sync thread, its one-way roots include itself as the last entry.

In figure 2.2, NR label of T7 is given by [2, 2, 〈1, 25〉] | [2, 〈1, 50〉]. The one-way root history of T7

is given by OH(T7) = [2, 〈1, 50〉]. The thread labeled with [2, 〈1, 50〉] is corresponding to T6 in the

POEG. So T6 is one of the one-way roots of T7 . It is also the only one-way root of T7 in this

case. T6 is the nearest sync thread in the parent function of the thread T7 .

Definition 4 (Nearest one way root Ψi
j) Given two threads Ti and Tj , λi < λj , the nearest

one-way root of Tj to Ti , denoted by Ψi
j , is the thread whose sync counter is the smallest one in

OH(Tj) such that it is greater than λi .

Take an example in figure 2.2, λ2 = 1, λ7 = 2, λ2 < λ7. T7 has only one one-way root [2, 〈1, 50〉]
whose sync counter is greater than the sync counter of T2 . So Ψ2

7 = [2, 〈1, 50〉].

9 2.3 MNR Labeling Algorithm

2.3.2 Algorithm

λ
(Ti) and OH(Ti), which is denoted by NR+The complete NR label of the task consists of NR+

λ
(Ti) | OH(Ti)).

The algorithm of MNR labeling is shown below

Initialize Cilk Main:

α0 = 1 (2.1)

β0 = max integer (2.2)

α = 1 (2.3)

β = max integer (2.4)

λ = 1 (2.5)

r = 1 (2.6)

OH(T) = [1, 〈α, β〉] (2.7)

Cilk Spawn:

For the initial thread in the child function

rc = rp + 1 (2.8)

αc = αp, αc0 = αc (2.9)

βc = αp + �
βp − αp �, βc0 = βc (2.10)

2
λc = λp (2.11)

OH(Tc) = OH(Tp) (2.12)

For the preceding thread in the parent function

αp = αp + �
βp − αp � + 1 (2.13)

2
Keep other parameters unchanged (2.14)

Cilk Sync:

λp = λp + 1 (2.15)

αp = αp0, βp = βp0 (2.16)

F or each child returned

λp = max(λp, λc + 1)

End F or (2.17)

2.3 MNR Labeling Algorithm	 10

Af ter all children return, check last item in OH(Tp)

If P n(OHlast (Tp)) = Pn(Tp), overwrite the last item by N Rλ(Tp)

OHlast (Tp) = NRλ(Tp)	 (2.18)

Else Add N Rλ(Tp) af ter the last item

OHlast+1(Tp) = NRλ(Tp)	 (2.19)

Keep other history items unchanged

The algorithm can be explained as below:

1)	 At the start of the program, assign the maximum integer range to nested range of the initial

thread. Treat the initial thread as a sync thread so the history entry of initial thread is itself.

〈α0, β0〉 denotes the nested range of function. The range value is never changed since the

first thread of the function is initialized.

2)	 Whenever there is a spawn operation, separate the nested range of the incoming thread into

two halves. The first half is assigned to the thread in the child function. The second half is

assigned to the preceding thread in the parent. The recursive depth of the thread in the child

function is the depth of that in parent function plus one. Furthermore, the history entries in

parent are copied into the thread in the child function.

3)	 Whenever there is a sync operation, the outgoing thread Ti of the sync operation will restore

its nested range by the initial value 〈α0, β0〉 of the function F (Ti). Its sync counter will be

the maximum sync counter value of the incoming threads plus one. Furthermore, if its last

history entry not is the sync thread in F (Ti), it will add its own label at the end of the history

entries. Otherwise, it will overwrite the last entry by its own label.

Formula for Concurrency Test

Given two access Ai and Aj on a shared variable X by threads Ti and Tj respectively, Ai precedes

Aj in IX
G	 , Tx is Ψi if λi < λj , Ti||Tj is equivalent to j

 	 NR(Ti)NR(Tx) if λi < λx ≤ λj

NR(Ti)NR(Tj) if λi = λj
true otherwise

2.3.3 An example of MNR labeling

We present a simple example to illustrate the MNR Labeling in Cilk program as Figure 2.2.

11 2.3 MNR Labeling Algorithm

From the observation, we know T2 || T4 . Since λ2 = λ4 = 1 , NR(T2) should be disjoint with

NR(T4). Check the figure, NR(T2) = 〈1, 25〉 and NR(T4) = 〈26, 37〉. Their labels are disjoint.

Let’s take another example, T2 and T8 . To decide their relationship, check their labels. Since

λ2 = 1 and λ8 = 2 , hence λ2 = λ4. Tx = Ψ2
8)), T2 is not 8 = [2, 〈1, 50〉]. Since ¬((T2)NR(Ψ2

parallel with T8.

Figure 2.2: Example of the Cilk POEG and MNR Labeling Algorithm

2.4 Correctness Proof of MNR Labeling Algorithm 12

2.3.4 An Issue on Label Extension

MNR labeling algorithm tests the relationship of the threads by comparing the relationship of their

nested regions. The initial thread is assigned the region 〈1, max integer〉]. The spawn operation

divides the nested region of the incoming thread into two halves and assigns them to two outgoing

threads. But if the region of the incoming thread Ti is not dividable any more such as αi =βi , what

does the algorithm do? At this situation, the MNR labeling algorithm will extend the region with

one more integer value. For example, Ti = 〈46, 46〉 in function Fi and the maximum integer is 1024.

After the spawn operation, the two outgoing threads will have nested region value 〈46 − 1, 46 − 512〉
and 〈46 − 513, 46 − 1024〉. The extension will still guarantee the correct comparison of the labels.

Once the function Fi does sync operation again, the proceeding thread will restore the initial value

of the function and the extension will be removed automatically.

In the situation that the function has a large number of spawn operations before the next sync

operation, the label extension may be required. Fortunately, the extension is only applied to the

labels whose nested region is necessarily to be extended. It doesn’t require the extension of all the

labels. And in general, the region initial value 〈1, max integer〉 is a pretty large range and the label

extension is not so common. So in the latter sections of the report, we discuss the MNR labeling

algorithm without concerning the issues of label extension.

2.4 Correctness Proof of MNR Labeling Algorithm

This section proves that the MNR labeling algorithm can correctly decide the concurrency rela-

tionship among threads given their labels. We show some basic properties of the algorithm before

the correctness proof.

2.4.1 Basic Properties of MNR Labeling Algorithm

This section presents some basic properties, which can be derived directly from the algorithm.

These properties are very helpful in the correctness proof.

Property 6 (Property of Ψi
j Existence) Given two threads Ti and Tj with λi < λj ,Ψj

i always

exists.

13 2.4 Correctness Proof of MNR Labeling Algorithm

The last item Tx in OH(Tj) satisfies λx = λj based on 2.17 and 2.18 in the MNR labeling algorithm.

So λx > λi. It indicates there is at least one thread in OH(Tj) whose sync counter is greater than

λi . So Ψi
j always exists when λi < λj .

Property 7 (Property 1 of MNR Labeling) After we expand on any basic function F , given

its sub-graph G(F) and any thread Ti such that Ti /∈ G(F),

NR(Ti) = 〈 α, β〉 before the expansion ⇐⇒ NR(Ti) = 〈 α, β〉 after the expansion.

From property of Cilk POEG, we know expanding one function does not change the concurrency

relationship of the threads outside the sub-graph of the function. From property 1 of the MNR

labeling, we know that the basic labels of threads do not change either. These two properties are

applied widely in our proof.

Property 8 (Property 2 of MNR labeling) Given function F and F �, and F is an ancestor

of F � , Ti is a thread in F � and Ts is a sync thread in F , NR(Ts) ⊇ NR(Ti)

Property 2 of MNR labeling indicates that the nested range of the sync thread in the ancestor

function is including the nested range of any thread in the descendent function.

Property 9 (Property 3 of MNR labeling) Given two threads Ti → Tj , λi ≤ λj

Property 3 of MNR Labeling indicates that λ value is monotonically increasing along the directed

path in Cilk POEG.

Lemma 1 NR(Ti)
 NR(Tj) =⇒ NR(Ti)� NR(Tj)

Proof Given two threads Ti and Tj , NR(Ti)
 NR(Tj) ≡ (NR(Ti) ⊆ NR(Tj)) ∨ (NR(Ti) ⊇

NR(Tj)) based on the definition of include operation.

NR(Ti) ⊆ NR(Tj)

=⇒ (αi ≤ βi) ∧ (αj ≤ βj) ∧ (αj ≤ αi) ∧ (βi ≤ βj)

=⇒ (αi ≤ βj) ∧ (αj ≤ βi)

≡ NR(Ti)� NR(Tj)

2.4 Correctness Proof of MNR Labeling Algorithm	 14

Similarly, we can get NR(Ti) ⊇ NR(Tj) =⇒ NR(Ti)�NR(Tj)

So we have the implication NR(Ti)
NR(Tj) =⇒ NR(Ti)�NR(Tj)

2.4.2 Correctness Proof of MNR labeling Algorithm

Given the labels of any two threads and the formula for the currency test, we say MNR labeling

algorithm is correct if the result of the concurrency test of the two threads is the same as the real

concurrency relationship between them.

The main theorem we are going to prove is the concurrency test formula in MNR labeling algorithm.

Before that, we will prove lemma 2 to lemma 5. Lemma 2 shows the labels of two parallel threads

are disjoint. Lemma 3 to 5 shows the relationship between their labels when the two threads are

serial.

Lemma 2 Given two threads Ti and Tj , Ti||Tj =⇒ NR(Ti)NR(Tj)

Proof The proof follows the construction of Cilk POEG and has three steps.

1.	 Prove Ti || Tj =⇒ NR(Ti)NR(Tj) when Ti and Tj are in the Cilk POEG Unit

When there is no spawn operation in G0 , there does not exist any parallel threads. When

there is only one spawn operation in G1 , let’s denote the two spawn threads by Ti and Tj

. We know Ti || Tj and Ti and Tj are the only parallel pairs in G. From 2.9, 2.10 and 2.13

in the MNR labeling algorithm, we know that when the parent does spawn operation, the

generated two parallel threads have disjoint labels. So Ti || Tj =⇒ NR(Ti)NR(Tj)

Suppose Ti || Tj =⇒ NR(Ti)NR(Tj) is true when there are n spawn operations. We will

show that the implication is still true when there are n + 1 spawn operations.

From the following graph, we can see that thread Tx is replaced by the Cilk POEG Unit G1

with one spawn operation when Gn is converted to Gn+1 . Based on the position of Ti and

Tj , we do analysis it in three cases:

(a).	 Ti and Tj are in G1

We have shown that Ti || Tj is true in G1

15 2.4 Correctness Proof of MNR Labeling Algorithm

Figure 2.3: The Transform of Cilk POEG Unit from N-Spawn Gn to (N+1)-Spawn Gn+1

(b).	 Ti and Tj are outside G1

The concurrency relationship between Ti and Tj doesn’t change. NR(Ti) and NR(Tj)

does not change. Ti || Tj =⇒ NR(Ti)NR(Tj) is true in Gn , so Ti || Tj =⇒ NR(Ti)NR(Tj)

is true in Gn+1 .
(c).	 Only one of Ti and Tj is in G1 .

Without loss generality, let’s assume Tj is in G1 . Ti is parallel with Tj in Gn+1 iff Ti is

parallel with Tj in Gn .

Ti||Tj in Gn+1 =⇒ Ti||Tx in Gn =⇒ NR(Ti)NR(Tj) in Gn

NR(Tx) ⊇ NR(Tj) =⇒ NR(Ti)NR(Tj)

So when Ti and Tj are in the Cilk POEG Unit,Ti || Tj =⇒ NR(Ti)NR(Tj) .

2.	 Prove Ti || Tj when Ti and Tj are in the series of Cilk POEG Unit

For the series of POEG unit, it is the series composition of Cilk POEG units. If Ti and Tj are

in different Cilk POEG unit, they are always in serial. The parallel thread pairs only exist

in every Cilk POEG unit. From step (1), we know the implication is correct in Cilk POEG

unit. So the implication is also true in the series of Cilk POEG Unit.

3.	 Prove Ti || Tj in general Cilk POEG

Cilk POEG is the recursive composition of the series of Cilk POEG units. In base case,

16 2.4 Correctness Proof of MNR Labeling Algorithm

Cilk POEG is just a series of Cilk POEG units. From the second step, we know that the

implication is true.

Suppose we have Cilk POEG G in which Ti || Tj =⇒ NR(Ti)NR(Tj) . Let’s prove when

we do recursive composition of any basic function F in G, Ti || Tj =⇒ NR(Ti)NR(Tj) still

holds for the new POEG G� . Based on the position of Ti and Tj , we have three cases

(a).	 Ti and Tj are in G(F) which is the sub-graph of the function F

G(F) is a series of Cilk POEG units, the implication is true.

(b).	 Ti and Tj are outside G(F)

The concurrency relationship of Ti and Tj is not changed. NR(Ti) and NR(Tj) are not

changed either. The implication is correct before the function expanding, so it is also

correct after that.
(c).	 Only one of Ti and Tj is in G(F)

Without loss generality, let’s assume Tj is in G(F). Tf is the thread in basic function F

before expanding.

Ti||Tj in G� =⇒ Ti||Tf in G =⇒ NR(Ti)NR(Tf) in G

(NR(Tf) ⊇ NR(Tj)) ∧ (NR(Ti)NR(Tf)) =⇒ NR(Ti)NR(Tj)

So in any Cilk POEG, Ti||Tj =⇒ NR(Ti)NR(Tj).

Lemma 3 Given three threads Tx , Ti and Tj , λi < λj , Tx is Ψi
j

Ti→Tj =⇒ NR(Ti)
NR(Tx)

Proof Given λi < λj , we know Tx always exists based on the property of Ψi existence. Thej

proof follows two cases: 1) Ti and Tj are in the same functions, 2) Ti and Tj are in the different

functions.

1.	 Ti and Tj are the threads in the same function F

Since λi < λj and Ti → Tj , there must be at least one sync threads between Ti and Tj in

function F. The nearest one to Tj denoted by Ty is the root of Tj in level RD(Tj). Since Ti

and Tj are in the same function F, Ti can’t reach any other roots of Tj in the directed path

from Ti to Tj based on the serial path property given Ti and Tj are in G(Tj). So the only

17 2.4 Correctness Proof of MNR Labeling Algorithm

root of Tj , which is in the directed path of Ti and Tj , is Ty . So Tx = Ty. Ty is a sync thread

in function F and Ti F , we know

NR(Tx) ⊇ NR(Ti) =⇒ NR(Tx)
NR(Ti)

2.	 Ti and Tj are the threads in different functions Fi and Fj respectively

If Ti and Tj are in function Fi and Fj and Ti → Tj , there is a directed path from Ti to Tj

. Information can flow from Fi to Fj . Since Cilk program is the recursive composition of

the series of Cilk POEG unit, the relationship of Fi and Fj is either Ancestor-Descendant or

they have common ancestor function.

(a). Fi is descendant of Fj

There is at least one sync thread in Fj along the directed path between Ti and Tj ,

otherwise the control flow cannot return to Fj from its descendent Fi . The nearest

one to Tj among those sync threads (denoted by Ty) is the root of Tj in the level

r = RD(Tj). The path between Ti and Tj passes through Ty . The directed path from

Ti to Tj does not pass through any other roots of Fj with level r > RD(Tj), based on

the serial path property given that Ti and Tj are in the G(Fj). Since Ty is the only root

in the path between Ti and Tj , Tx = Ty. Since Tx is the sync thread in Fj , which is

the ancestor of Fi , NR(Tx) ⊇ NR(Ti) =⇒ NR(Tx)
NR(Ti) based on the property 2

of the NR labeling algorithm.
(b). Fi is ancestor of Fj

There are two sub cases:

When there is at least one sync thread in Fi along the path between Fi and Fj , among

them the nearest sync thread Ty to Tj is the root of Tj in the level r = RD(Fi). Ty is

also the first root of Tj in the path between Ti and Tj , so Tx = Ty. Since Ty is the sync

thread in Fi and Tx = Ty, NR(Tx) ⊇ NR(Ti) =⇒ NR(Tx)
NR(Ti).

When there is no sync thread in Fi along the path between Fi and Fj , there is at least one

spawn operation between Ti and Tx . After spawn, NR(Ti) is divided. NR(Tx) is in the

sub-branch of NR(Ti) before next sync in Fi . NR(Ti) ⊇ NR(Tx) =⇒ NR(Tx)
NR(Ti)

(c).	 Fi and Fj have common ancestor function

Denote Fx as the least common ancestor function of Fi and Fj . Since Fi and Fj are not

ancestor-descendant relationship and Ti → Tj , the path from Ti to Tj must pass through

at least one sync thread in Fx . It implies that Tj has root Ty at level r = RD(Fx).

Since Fx is the least common ancestor function of Fi and Fj , Ty is the nearest root of

18 2.4 Correctness Proof of MNR Labeling Algorithm

Tj in the path from Ti to Tj . So Tx = Ty. Since Tx = Ty is the sync thread in the least

common ancestor of Fi and Fj ,NR(Tx) ⊇ NR(Ti) =⇒ NR(Tx)
NR(Ti)

From the above three cases, we know NR(Tx) ⊇ NR(Ti) =⇒ NR(Tx)
NR(Ti) when Ti and

Tj are in the different functions.

No matter Ti and Tj are in the same function or in the different functions, given three threads Tx

, Ti and Tj , and Tx is Ψj
i , λi < λj ∧ Ti→Tj =⇒ NR(Ti)
NR(Tx).

Lemma 4 Given three threads Tx , Ti and Tj , and Tx is Ψi if λi < λj, Ti→Tj impliesj 	 NR(Ti)
NR(Tx) if λi < λx ≤ λj

NR(Ti)
NR(Tj) if λi = λj
false otherwise

Proof Ti → Tj implies two cases: 1) Ti happens before Tj without sync operations, 2) Ti happens

before Tj with some sync operations.

Case 1:

Without sync operations between Ti and Tj , we know λi = λj and there are only spawn operations

along the directed path from Ti to Tj . With spawn operation, the label of the incoming thread will

be divided into two disjoint sub-ranges which are assigned to the labels of the two outgoing threads

respectively. With several spawn operations, NR(Ti) will be divided into several sub-ranges and

NR(Tj) is in one of them. So we have NR(Ti) ⊇ NR(Tj) =⇒ NR(Ti)
NR(Tj)

Case 2:

Since Ti happens before Tj with some sync operations, λi < λj based on the algorithm. Given Ti

→ Tj and λi < λj , we have NR(Ti)
 NR(Tx) based on Lemma 3.

The two cases cover all the possible results given Ti → Tj . When λi < λj , Ti → Tj never holds.

Lemma 5 Given three threads Tx , Ti and Tj , and Tx is Ψi if λi < λj, Ti→Tj impliesj 	 NR(Ti)�NR(Tx) if λi < λx ≤ λj

NR(Ti)�NR(Tj) if λi = λj
false otherwise

19 2.4 Correctness Proof of MNR Labeling Algorithm

Proof Lemma 5 can be derived directly from lemma 4 and lemma 1.

Theorem 1 is the main theorem in MNR labeling algorithm. It determines the relationship between

two threads based on their labels. If sync counter of two threads are equal, their labels are disjoint

is equivalent to they are parallel. If sync counter of two threads are not equal, we need to introduce

the nearest one way root of the larger sync counter thread from the smaller sync counter thread.

Theorem 1 Given four threads Tx , Ty , Ti and Tj , Tx is Ψi if λi < λj, Ty is Ψj if λj < λi , Tij i

|| Tj is equivalent to

 	 NR(Ti)NR(Tx) if λi < λx ≤ λj

NR(Ti)NR(Tj) if λi = λj
NR(Tj)NR(Ty) if λj < λy ≤ λi

Proof The proof follows the two directions

1.	 (=⇒)

There are three cases:

(a).	 λi < λx ≤ λj

If Tx || Ti , we can derive NR(Tx) NR(Ti) . Let’s prove Tx || Ti by contradiction.

If Tx is not parallel with Ti , Tx → Ti or Ti → Tx . If Tx → Ti ,λx ≤ λi. It is contradicted

with λi < λx in the condition. Since Tx is the one-way root of Tj , Tx → Tj . If Ti →

Tx , Ti → Tj . It is contradicted with the condition Ti || Tj . So we have Tx || Ti . From

Lemma 2, we have Ti || Tx =⇒ NR(Ti)NR(Tx) .

(b). λi = λj

From Lemma 2, Ti||Tj =⇒ NR(Ti)NR(Tj)

(c). λj < λy ≤ λi

It can be proved in similar way as that in case (a).

2.	 (⇐=)

There are three cases

(a).	 λi < λx ≤ λj

From the lemma 5, we know Ti → Tj =⇒ NR(Ti)�NR(Tj). The contrapositive of the

implication is

¬(NR(Ti)�NR(Tj)) =⇒ ¬(Ti→Tj) =⇒ (Tj→Ti) ∨ (Ti||Tj)

2.5 Left-of relation	 20

If	 Tj → Ti , λi ≤ λj . It is contradicted with the condition λi < λx ≤ λj . So we

have Ti || Tj in this case. Since NR(Ti)NR(Tx) ≡ ¬(NR(Ti)�NR(Tx)). We get

NR(Ti)NR(Tx) =⇒ Ti||Tj

(b). λi = λj and (c) λj < λy ≤ λi

Case (b) and (c) can be proved in similar way as case (a) through the contrapositive of

lemma 5.

We’d like to prove a corollary from theorem 1. The corollary can be directly applied in the MNR

labeling algorithm for thread concurrency test.

Corollary 1 Given two access Ai and Aj on a shared variable X by threads Ti and Tj respectively,

Ai precedes Aj in IX
G	 , Tx is Ψi if λi < λj , Ti||Tjis equivalent to j 	 NR(Ti)NR(Tx) if λi < λx ≤ λj

NR(Ti)NR(Tj) if λi = λj
true if λi > λj

Proof The proof has three cases to consider based on the relationship between λi and λj

(a) λi < λx ≤ λj and (b) λi = λj

The result here can be directly derived from theorem 1 in both directions

(c) λi > λj We need to prove Ti is always parallel with Tj when λi > λj given the conditions in the

corollary. Let’s prove by contradiction. Suppose Ti is not parallel with Tj , Ti → Tj ∨ Tj → Ti . If

Ti → Tj , λi ≤ λj . It is contradicted with λi > λj in the condition. If Tj → Ti , Aj must precedes

Ai in IX
GG . It is contradicted with the condition that Ai precedes Aj in IX . All the consequences

from the supposition are not true. The supposition is not true. So Ti || Tj . It means that Ti || Tj

is always true when λi > λj .

Until this point, we have completed the correctness proof of the MNR labeling algorithm. We

showed that the two threads are parallel if and only if they are reported to be parallel through the

comparison of their labels.

2.5 Left-of relation

We define a left of relation that gives a partial order of vertices in Cilk POEG. The access history

algorithm described in chapter 3 requires a labeling scheme in which a left-of relation is defined.

⋂

21 2.5 Left-of relation

The notation of left of relation is given by ≺

Definition 5 Given two threads Ti and Tj ,

Ti ≺ Tj ⇐⇒ αi < αj

Theorem 2 shows that the left-of relation establishes a canonical ordering of relatives with respect

to their shallowest least common ancestor (LCA).

Theorem 2 Given three threads Ti , Tj and Tk , Ti || Tj || Tk ,

Ti ≺ Tj ≺ Tk =⇒ LCA(Ti, Tk) = LCA(Ti, Tj , Tk)

Proof Let’s denote Fi , Fj and Fk as the function including Ti , Tj and Tk respectively. Since

Ti || Tj || Tk , we know the three functions are different.

Let’s denote Fx as the least common ancestor of Fi and Fk . Since Ti || Tk , NR(Ti) NR(Tk).

Given Ti ≺Tk and NR(Fx)NR(Tk), we have βi < αk. So NR(Fx) ⊇ 〈αi, βj〉 .

Given Ti ≺ Tj , αi < αj . Given Tj || Tk and Tj ≺ Tk , βi < αk ≤ βk . Since NR(Fx) ⊇ 〈αi, βj〉,
NR(Fx) ⊇ NR(Tj) .

Assuming Fx is not ancestor of Fj , they can be in one of the three relationships based on function

relationship property.

1.	 Fx is serial to Fj

Fx → Fj =⇒ return(Fx)→Fj

Since Fx is LCA(Fi, Fj), Ti and Tj are in subgraph of Fx . Based on subgraph initial and

return thread property Fi→ return(Fx) and Fj→ return(Fx). From the transitivity of serial

operation,Fi→ return(Fx)→Fk . It is contradicted with the given condition Fi || Fk . So Fx

is not serial to Fj .

2.	 Fx is parallel with Fj

Fx||Fj =⇒ NR(Fx)NR(Fj) =⇒ NR(Fx) NR(Tj) = ε. It contradicts with NR(Fx) ⊇

NR(Tj), since NR(Tj) �= ε

22 2.5 Left-of relation

3.	 Fj is the ancestor of Fx

Given Fj is the ancestor of Fx and any thread Tx in sub-graph of Fx , we have Tj || Tx

=⇒ Tx ≺ Tj . Since Fx is common ancestor of Fi and Fj , Ti and Tk are in the sub-graph of

Fx . Ti ≺ Tj and Tk ≺ Tj . It contradicts with the given condition Tj ≺ Tk.

The assumption is never true, Fx is ancestor of Fj . Since Fx = LCA(Fi, Fk) and Fx is ancestor of

Fj , Fx = LCA(Fi, Fj , Fk).

There is an important indication from theorem 2.

Given there are k parallel accesses to the variable X and two locations lef tx and rightx for record

keeping. The program sees k access from F1 = Access1(X) to Fk = Accessk(X) in any order.

•	 Initialize lef tx and rightx to the value of the first access on X. Let’s assume the value is Fi .

•	 For any other accessk

If Accessk ≺ lef tx, Do lef tx = Accessk

If rightx ≺ Accessk, Do rightx = Accessk

Finally, applying theorem 2, we can get LCA(lef tx, rightx) = LCA(F1, F2, F k). It means that we

are able to keep two parallel records which have the shallowest LCA.

Chapter 3

ALGORITHM FOR ACCESS
MONITORING AND RACE
DETECTION

What is the smallest number of entries kept in access history of each location so that the data race

in the location can be detected if and only if there is a determinacy race exists. Obviously two

entries (one for read, one for write) are not enough. In simple parallel program without nested

parallel loop, three entries (two for read, one for write) should be enough. The algorithm just keeps

any two parallel read records of each variable once there are at least two parallel read records.

This model is not applicable to the language like Cilk. Keeping any two parallel read accesses may

miss some data races. If we can always keep the two parallel read accesses, which have the shallowst

LCA (least common ancestor) in parent child spawn tree, we are able to detect the data race with

only two read access records. The idea here is to keep the left-most and right-most parallel read

access records for each shared location. After we presented this idea in the project proposal, we

found that the idea of using left-of relationship to keep three access records for each variable has

been adoped in previous research such as OS labeling scheme [2]. We found that the checkread

and checkwrite procedures in OS labeling scheme for record maintaining and race checking can be

applied in our Parallel Nondeterminator. We present the readcheck and writecheck procedures in

section 3.1 and prove its correctness in section 3.2.

23

3.1 Algorithm 24

3.1 Algorithm

The access history for each variable keeps three records - Read Left(RL), Read Right(RR) and

Write(W). The monitoring procedure is shown below [2].

Checkread(access history, tlabel)

If access history.W ‖ tlabel then

Report a write-read data race

End if

If tlabel ≺ access history.RL or access history.RL → tlabel

access history.RL=tlabel

End if

If access history.RR ≺ tlabel or access history,RR → tlabel

access history.RR=tlabel

End if

End checkread

Checkwrite(access history, tlabel)

If access history.W ‖ tlabel then

Report a write-read data race

End if

If access history.RL ‖ tlabel or access history.RR ‖ tlabel

Report a read-write data race

End if

access history.W=tlabel

End checkwrite

3.2 Race Detection Correctness Proof

There are two critical factors for the correctness of the race detection: 1) the concurrency rela-

tionship determination algorithm (MNR labeling) must be correct, and 2) the left-of relation must

be able to establish a canonical ordering of relatives with respect to their LCA. In theorem 1, we

proved that the MNR labeling is able to correctly decide the concurrency relationship given the

25 3.2 Race Detection Correctness Proof

labels of any two threads. In theorem 2, we proved that the left-of relation establishes a canonical

ordering of relatives with respect to their shallowest least common ancestor.

Here we would show that at least one data race will be reported using the checkread and checkwrite

access history algorithm if any data race is present for a shared variable. Because the proof of

theorem 3 to 6 is conducted in a similar way as the ones in OS labeling [2] once the correctness of

the two critical factors are guaranteed, we will just sketch the outline of the proof and focus on the

place with differences.

Theorem 3 In a checked access interleaving IX for a variable X and a Cilk POEG G(V, E),G

checkwrite will report a data race for a write in IX
G if it is logically concurrent with some earlier

read in IX .G

Proof Outline

Proof is conducted by contradiction.

Suppose , r ∈ IX precedes w in IX , Tr and Tw are the threads executing r and w operation
G G

respectively, and Tr ‖Tw , but checkwrite fails to report a data race. Denote the access history of

X by OH(X) and the three access records by OH(X).RL, OH(X).RR, OH(X).W

No race is reported when access operation is w

⇒ (OH(X).RR → Tw) ∧ (OH(X).RL → Tw) (I1)

If (Tr → OH(X).RL) ∨ (Tr → OH(X).RR), Tr → Tw. Contradicted with the supposition.

⇒ ¬(Tr → OH(X).RL) ∧ ¬(Tr → OH(X).RR) (I2)

Tr is not present in the read access history

⇒ ¬(OH(X).RL → Tr) ∧ ¬(OH(X).RR → Tr)

∧¬(Tr ≺ OH(X).RL) ∧ ¬(OH(X).RR ≺ Tr)

∧((OH(X).RL = OH(X).RR) ∨ (OH(X).RL‖OH(X).RR)) (I3)

Combining I2 and I3,

⇒ (Tr‖OH(X).RL) ∧ (Tr‖OH(X).RR) ∧ ¬(Tr ≺ OH(X).RL) ∧ (OH(X).RR ≺ Tr)

⇒ (OH(X).RL‖Tr‖OH(X).RL) ∧ (OH(X).RL ≺ Tr ≺ OH(X).RR) (I4)

26 3.2 Race Detection Correctness Proof

Let Fx = LCA(F (OH(X).RL), F (OH(X).RR)). Set Tsync to be the closest common thread which

happen after OH(X).RL and OH(X).RR. Tsync must be the sync thread in Fx . We have

(OH(X).RL → Tsync)∧ (OH(X).RR → Tsync) ∧ (Tsync → Tw). Based on theorem 2, Fx =

LCA(F (OH(X).RL), F (Tr), F (OH(X).RR)), Fx is also the ancestor of F (Tr). Since Tsync is the

sync thread in the ancestor of F (Tr), (Tsync → Tr) ∨ (Tr → Tsync). If Tsync → Tr, (OH(X).RL →

Tsync) =⇒ (OH(X).RL → Tr). It is contradicted with the derivation I4. If Tr → Tsync, (Tsync →

Tw) =⇒ (Tr → Tw) . It is contradicted with the supposition Tr ‖Tw .

By showing a contradiction in every case to the supposition, the theorem is proved.

Theorem 4 In a checked access interleaving ∈ IX for a variable X and a Cilk POEG G(V, E), if G

any two writes in ∈ IX
G are logically concurrent, then checkwrite will report a data race.

Proof Outline

Suppose w1 precedes wk in ∈ IX
G , Tw1 and Tw2 are the threads executing w1 and w2 operation

respectively, and Tw1 ‖Tw2 .

If Tw1 is present in OH(X) at the access check of w2 operation, data race will be reported.

If Tw1 is not present in OH(X).W at the access check of w2 operation, there is a sequence of wai

(i=1...k) write operation which overwrite the value of OH(X).W . If the race is not reported from

Tw1 to Tw2 , Tw1 → Twa1 → Twa2 ... → Twak
→ Tw2 . It is contradicted with Tw1 ‖Tw2 . So the race

will be reported.

Theorem 5 In a checked access interleaving IX for a variable X and a Cilk POEG G(V, E), aG

data race will be reported if a read in IX
G is logically concurrent with some earlier write in IX .G

Proof Outline

Suppose w precedes r in IX
G , Tw and Tr are the threads executing w1 and w2 operation respectively,

and Tw ‖Tr .

If Tw is present in OH(X) at the access check of r operation, data race will be reported.

If Tw is not present in OH(X).W at the access check of r operation, there is a sequence of wai

(i = 1 . . . k) write operation which overwrite the value of OH(X).W . If the race is not reported

27 3.2 Race Detection Correctness Proof

from w to wak ,Tw → Twa1 → Twa2 ... → Twak
. If no race is reported at the access check of r

operation Twak
→ Tr. We have Tw → Tr. It is contradicted with Tw1 ‖Tw2 . So there will be some

race reports from w to r.

Theorem 6 In a checked access interleaving IX for a variable X and a Cilk POEG G(V, E), at G

least one data race will be reported if there are any conflicting, logically concurrent access in IX
G	 .

Proof Outline

There are three cases of conflicting accesses to consider:

1) Read after write access by parallel threads.

Race will be reported based on theorem 5.

2)	 Write after read access by parallel threads.

Race will be reported based on theorem 3.

3)	 Write after write access by parallel threads.

Race will be reported based on theorem 4.

Until this point, we have completed the correctness proof of our Parallel Nondeterminator. Our

parallel nondeterminator will report at least one data race for each variable if there are any con-

current and conflicting accesses in the variable. The next section will analyze its performance.

Chapter 4

PERFORMANCE ANALYSIS

In this section, we examine the efficiency of our Parallel Nondeterminator. Its efficiency depends

on the following parameters.

• V: the number of shared variables

• T: the maximum parallelism

• N: the nesting depth

• P: the number of processors

Time Complexity

In each spawn operation to create a child function, the parent needs to adjust its label with

complexity O(1) and assigns a label of size O(N) to the its child function. So the work for each

spawn is O(N).

In each sync operation, the parent only needs to get the λ value of the child, its time complexity

is O(1).

The worst case time to verify if a shared variable access is involved in data race is dependent on

the number of access history entries for each shared variable and the time to test concurrency

between one label and one entry. There are three access history entries for each shared variable in

our Parallel Nondeterminator. For each entry, when its λ value is greater than or equal to the λ

value of the label, complexity is O(1). Otherwise, it needs to use binary search to find the nearest

root of the label respect to the entry. Since the maximum length of the label history is O(N). The

worst case complexity to check the concurrency relationship between a thread label and an entry is

O(log2N). Since there is constant number of entries in access history for each shared variable, the

worst case complexity for each shared variable access is O(log2N).

28

29

There are two factors in our parallel nondeterminitor, which affects the critical path of the cilk

program. First, the work increases in the threads due to spawn, sync and race checking overhead.

The critical path will increase correspondingly. But this increase generally does not affect the level

of parallelism of the program. The second factor is that the history entries for each shared variable

are required to be locked in readcheck and writecheck to guarantee the consistency of the access

history. The lock will reduce the level of parallelism when two threads are accessing the history

of the same variable concurrently. So it will increase the length of critical path. The increase

is dependent on the number of concurrent readcheck and writecheck in the same shared variable.

The influences on critical path and level of parallelism are further tested and discussed in the

experiments.

Space Complexity

Space complexity includes the space for shared variable access history and the space for thread

labels. The space for shared variable access history = the number of entries per variable × the space

per entry × the number of shared variables. Since the number of entries per variable is O(1), the

space per entry is O(1) and the number of shared variables is V, the space for shared variable access

history is O(V). The space for thread labels = label space for each thread × number of concurrent

threads=O(N)× min(P,T)=O(min(NP, NT)). So the space complexity is O(V+ min(NP, NT)).

In summary, the time complexity is O(N) per spawn, O(1) per sync and O(log2N) per shared

variable access. The space complexity is O(V+ min(NP, NT)).

Chapter 5

SIMULATION AND
PERFORMANCE EVALUATION

In this section, we design Cilk simulation to implement our MNR labeling algorithm and evaluate

its performance based on our testing cases.

5.1 Simulation

We will introduce the simulation in this part. Our simulator has two main components: simulation

program generator and nondeterminator runtime library. Generator is designed to automatically

generate testing sample cilk programs. The nondeterminator runtime library implements the pro-

cedures of MNR labeling algorithm described in section 2 and race detection algorithm described

in section 3. It supports labeling and read-write check operations.

5.1.1 Simulation Program Generator

Simulation Program Generator is designed to generate testing cases of cilk programs automatically.

In each run, the generator will read the specification file and generate two cilk programs based on

the specifications. One program is the normal cilk source, which is used as the reference in our

performance evaluation. The other program is an instrumented cilk source which has the embedded

nondeterminator routines. The two programs have the same source codes except that the latter

one has additional routines to support parallel nondeterminator race checking. This design makes

it possible to test the overhead introduced by race detection. Another important consideration for

30

31 5.1 Simulation

our generator design is to generate representative and meaningful testing cases. We try to generate

source codes which cover a wide variety in terms of different function number, computation time,

recursion depth, shared variable number, interleaving of operations, spawn and sync numbers.

Our specification file including the parameters is listed in Figure 5.1.

Figure 5.1: Sample specification file of Parallel nondeterminator

In the specification file, there are three parameters to define the features of the source program

– the number of shared variables, the depth of recursion and the number of functions. In each

function, there are three range values to define the features which are range of sync numbers, range

of the number of spawns per sync and range of calculation delay. The calculation delay means to

simulate the computation on the local variables. We use multiplication in our program to simulate

the effect of local computation. In addition, d calculation delay stands for d-step of multiplications.

With the above specification, our generated file looks like: (the follows is the main part of the file)

32 5.1 Simulation

#define SHARED_VARIABLE_NUMBER 3

#define MAX_RECURSION_LEVEL 3 definitions of parameters based on specification file

#define MAX_LONG 1024

int var_0, var_1, var_2, var_3; declarations of shared variables and cor responding locks

Cilk_lockvar lock0, lock1, lock2, lock3;

Access_History *hist; declaration of access history

cilk void function_1(Label *flabel, int *ldax); function prototypes

cilk void function_2(Label *flabel, int *ldax);

inline void calc(int n) {

 int i;

 double x=1.214;

for(i=0; i<n; i++){

x=x*1.214;

 }

}

cilk void function_1(Label *flabel, int *ldax){

if(flabel->level>MAX_RECURSION_LEVEL)

calc(346);

{

function_1 declaration

check on recursion depth

if it has exceeded maximum, returns

{

block

a spawn-sync

int *lda;

lda=malloc(2*sizeof(int));

spawn function_2(spawn_child(flabel), &lda[0]); spawn a subroutine

{

Cilk_lock(lock1); shared variable write access

writecheck(&hist[0],1, flabel, 40); with lock/unlock

Cilk_unlock(lock1);

var_1=896;

}

calc(815);

return;

declaration of calculation delay function,

 we use multiplication to implement it.

 calculation delay simulating

 local operation

spawn function_2(spawn_child(flabel), &lda[1]); spawn another subroutine

{

 int tmp;

Cilk_lock(lock9);
 shared variable

readcheck(&hist[8], 9, flabel, 50); read access

 Cilk_unlock(lock9);

 tmp=var_9;

 }

calc(383);

sync;
 sync operation

after_sync(flabel, lda, 2); labels update after sync

}

33 5.1 Simulation

{

int *lda;

lda=malloc(2*sizeof(int));

spawn function_2(spawn_child(flabel), &lda[0]);

calc(665);

spawn function_1(spawn_child(flabel), &lda[1]);

{

int tmp;

Cilk_lock(lock2);
 another spawn_sync block

readcheck(&hist[1], 2, flabel, 68);

Cilk_unlock(lock2);

tmp=var_2;

}

calc(670);

sync;

after_sync(flabel, lda, 2);

}

}

calc(373);

 *ldax=flabel->lda;

 free(flabel);

return;
 function return

}

....

cilk int main(int argc, char *argv[]){
 declaration of main function

Cilk_time tm_begin, tm_elapsed;

 Label *flabel;

 tm_begin=Cilk_get_wall_time();

 {

int i;

hist=malloc(SHARED_VARIABLE_NUMBER*sizeof(Access_History));

for(i=0; i<SHARED_VARIABLE_NUMBER; i++){

hist[i].rl.lda=1;

hist[i].rl.alpha=1;

hist[i].rl.belta=MAX_LONG;

hist[i].rr.lda=1;

hist[i].rr.alpha=1;
 initialize access history

hist[i].rr.belta=MAX_LONG;

hist[i].w.lda=1;

hist[i].w.alpha=1;

hist[i].w.belta=MAX_LONG;

}

}

345.1 Simulation

{

flabel=malloc(sizeof(Label));

flabel->alpha_o=1;

flabel->belta_o=MAX_LONG;

flabel->alpha=1;

flabel->belta=MAX_LONG;

flabel->level=1;

flabel->lda=1;
 initialize the labels

flabel->rec_num=1;

flabel->oh=malloc(sizeof(Record_History));

flabel->oh->alpha=1;

flabel->oh->belta=MAX_LONG;

flabel->oh->lda=1;

fprintf(stderr, "Complete label initialization\n");

 }

{

{

int *lda;

lda=malloc(2*sizeof(int));

spawn function_1(spawn_child(flabel), &lda[0]);

calc(513);
 a spawn_sync block

spawn function_1(spawn_child(flabel), &lda[1]); the same as in the other functions

calc(480);

sync;

after_sync(flabel, lda, 2);

}

...

 }

 tm_elapsed=Cilk_get_wall_time()-tm_begin;

printf("time spent: %d \n",tm_elapsed);

 return 0;

}

Basically, the generator will generate the source programs with the similar structure as shown

above. Based on different specifications, the generated source programs will have different numbers

of shared variables, functions and recursive depths. The functions will have different computation

time, variable operations and spawn sync patterns. By means of that, our generated programs

could cover a wide variety of cases in a random fashion.

5.2 Performance Evaluation 35

5.1.2 Nondeterminator Runtime Library

Nondeterminator Runtime Library provides the runtime support of our race checking programs. It

implements the procedures in MNR labeling algorithm such as label initialization, label update and

concurrency relationship detection. It also implements the procedures in race detection algorithm

as well, such as read check, write check and race report. During the execution of race checking Cilk

program, those routines will be invoked to perform labeling and race detection operations.

5.2 Performance Evaluation

In this section, we will discuss the experimental results and evaluate the performance of our Parallel

Nondeterminator. The testing is designed to fulfill two tasks - correctness testing and effectiveness

testing.

5.2.1 Correctness Testing

The functionality of our Nondeterminator is to report the data races correctly during the parallel

execution of the Cilk programs. So the first thing in the testing is to ensure the correctness of

the implementation of our algorithms. We conducted a large number of testing for verifying the

correctness. In smaller programs, we analyzed the reported races by hand. In larger programs,

we compare the reported races with those returned by the serial nondeterminator in Cilk version

5.2.1. Our parallel nondeterminator performed correctly in all the testing cases. We will show one

example of correctness testing as follows.

We conducted correctness test by comparing the results returned from our Parallel Nondeterminator

simulator and from Cilk Nondeterminator in Figure 5.2. The left part of the results is obtained

from our Parallel nondeterminator, and the right part is obtained from the serial Nondeterminator

in Cilk version 5.2.1. In our Nondeterminator, race reports include three parameters: the type of

data race, the name of shared variable and the line numbers of the conflicting variable access.

Figure 5.3 shows the testing program which generates the data race. The main function spawns

to the function 13 first, in which there is a write operation on variable 9. Then the main function

spawns the function 23, in which there exists a read operation on variable 9. We know there is a

data race between these two operations. As expected, our Parallel Nondeterminator also reports a

WR-type data race between line 504 and line 891 on variable 9.

36 5.2 Performance Evaluation

Figure 5.2: Sample outputs of Parallel nondeterminator and Cilk Nondeterminator

Figure 5.3: Sample Cilk Program with Parallel nondeterminator and potential data race

Figure 5.4 shows the running time of the cilk program in Figure 5.2. The program was tested with

processor number from 1 to 32. According to the curve shown in the graph, the program with race

37 5.2 Performance Evaluation

check ran for about 0.225 seconds on 1 processor and ran for about 0.03 seconds on 12 processors.

With parallel computation, its execution time reduced by around seven times of the time in serial.

It introduces very small overhead compared with the program without race checking.

Table 5.1: Specification of the test case

Parallel Nondeterminator

No race-checking

e
x

e
c

u
ti

o
n

 t
im

e

(s
e

c
o

n
d

) 0.25

0.225

0.2

0.175

0.15

0.125
0.1

0.075
0.05

0.025

0

1 2 4 8 12 16 24 32

Processor Number

Figure 5.4: Sample execution time of Cilk program with parallel nondeterminator

5.2.2 Effectiveness Testing

Besides the correctness, another important factor is the effectiveness of the cilk programs with

Parallel nondeterminator. We test the performance of our parallel nondeterminator in a wide

38 5.2 Performance Evaluation

variety of programs with the changed recursion depth and calculation delay. Furthermore, we also

compare the critical path and parallelism of our program with the corresponding cilk program

without race checking. All the tests were conducted on yggdrasil.lcs.mit.edu.

In our evaluation, we use execution time ratio as the basic criterion to evaluate the performance of

Parallel nondeterminator. The ratio is defined as follows:

execution time ratio =

execution time of the Cilk program with race checking
execution time of the corresponding Cilk program without race checking

The program pairs in the comparison are generated from our simulation program generator. When

the execution time ratio is close to 1, it indicates that the program with our race checking introduces

very little overhead above the original program. It shows a good performance. Otherwise if the

execution time ratio is much larger than 1, it indicates that a lot of overhead is resulted from the

race checking.

Experiment on the change of recursion depth

Recursion depth is a critical factor which affects the performance of our MNR labeling algorithm

based on the theoretical analysis. This set of experiments was designed to explore the influence of

recursion depth on the performance of our nondeterminator from the aspect of experiments.

Table 5.2: Specification of the test cases

Figure 5.5 illustrates the performance curves under the change of recursion depth. X-axis is the

number of processors and Y-axis is the execution time ratio. Seven curves represent seven different

recursion depths from 3 to11 respectively.

39 5.2 Performance Evaluation

0.6

0.7

0.8

0.9
1

1.1
1.2
1.3
1.4

1.5
1.6
1.7
1.8
1.9

2

1 2 4 8 12 16 24 32

number of processors

e
x

e
c

u
ti

o
n

 t
im

e
 r

a
ti

o r=3

r=5

r=7

r=8

r=9

r=10

r=11

Figure 5.5: Performance ratios with change of recursion depth

In general, the performance ratios range from 1 to 1.8, and they are mainly located in the interval

from 1 to 1.5. With small processor number (<8), the performance ratios are very close to 1.

The increase of recursion depth does not have obvious influence on the performance. But when

the processor number becomes larger (>=8), the increase of the recursion depth does make the

performance drop.

The reasons can be explained as below:

1)	 With the increase of recursion depth, the overhead introduced by race checking for each shared

variable access increases correspondingly based on the performance analysis with worst case

time complexity O(lgN). But in general, it only took one or two steps to find the relationship

between each pair of labels as we tracked on the execution of the programs. So the performance

of our parallel nondeterminator is still pretty good given the increase of the recursion depth.

2)	 When the processor number is large, the real parallelism tends to be large. As we showed in

the sample program in section 5.1.1, the read and write check needs to lock the variable before

the checking and unlock it after that. When the processor number is larger, the possibility

40 5.2 Performance Evaluation

of conflict access on critical region of each variable becomes higher. The locks will reduce the

parallelism of the race detection program and introduce some overheads. That is why the

performance drops somewhat when the processor number becomes large.

In addition, there is a peak appearing around 16 processors. That is to say, the ratio comes to the

largest at this point and the performance is worst at this point. Furthermore, it is not an occasional

situation in our testing. In fact, a large section of our testing cases has the peak on 16 processors.

It is pretty hard to explain why the worst case is in 16 processors but not 32 processors. It may

be related to the interconnection of the ygg cluster.

Experiment on the change of calculation delay

The testing program uses calculation delay to simulate local operations. With the increase of

calculation delay, the percentage of shared variable operations drops.

Table 5.3: Specification of the test cases

Figure 5.6 displays the performance curves with different calculation delays. X-axis is the number

of processors and Y-axis is the execution time ratio. Four curves represent four different ranges of

calculation delay from 1000 to 1000000 respectively.

From Figure 5.6, we can see that the performance ratio is very close to 1 when the calculation delay

is greater than 10000 steps of multiplication. When the calculation delay is smaller (<1000), the

execution time ratio is higher, which indicates the drop of the performance.

Since calculation delay represents the local variable computations, its increase indicates that the

percentage of operations on shared variables decreases. So the overhead introduced in the shared

variable access takes less importance with respects to the total computation time. It explains why

the performance is better when the computation delay is larger.

41 5.2 Performance Evaluation

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1 2 4 8

number of processors

e
x

e
c

u
ti

o
n

 t
im

e
 r

a
ti

o

d=1000

d=10000

d=100000

d=1000000

12 16 24 32

Figure 5.6: Performance ratios with change of calculation delay

Experiment on critical path and parallelism

This experiment is designed to compare the critical path and parallelism of the programs with and

without race checking. The purpose is to explore the influence of race checking on the change of

critical path and parallelism.

Table 5.4: Specification of the test cases

42 5.2 Performance Evaluation

Table 5.5: Testing results

Table 5.5 lists the experimental results of critical path and parallelism and the ratios between

parallel nondeterminator and no race-checking program. We notice that the ratio of critical path

ranges from 2 to 3, and the ratio of parallelism ranges from 0.5 to 1. The data tells us that the

race check routines increase the critical path by one to two times of the original and the parallelism

reduces to 0.7 times of the original in average.

There are two reasons for the increase of the critical path and the decrease of the parallelism level:

1)	 Our Parallel nondeterminator does some extra work than the no race-checking Cilk programs.

For additional work - reporting data races, it needs to maintain an access history of the shared

variables and check on every read or write operation for shared variables. The work increase

on the threads along the critical path results in the increase of the critical path.

2)	 To ensure the consistency of the access history, we use locks to protect the shared variable

access history in read check and write check. Those locks reduce the level of parallelism

when several threads are doing read/write check concurrently on the same variable. Such a

situation also results in the increase of the critical path.

Extreme case in experiments

This part shows an extreme case in our experiments. The race check introduces significant overhead

to the parallel execution of the program.

Figure 5.7 illustrates the performance ratios on different numbers of processors. X-axis is the

43 5.2 Performance Evaluation

Table 5.6: Specification of the test cases

number of processors and Y-axis is the execution time (second). Two curves stand for the execution

time of the programs with race check and without race check.

0

10

20

30

40

50

60

70

80

1 2 4 8 16 32

number of processors

e
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
o

n
d

)

Parallel Nondeterminator

No race-checking

Figure 5.7: Bad case of the overhead on lock/unlock operations

From Figure 5.7, we can see that the execution time of the race check program in 32 processors is

5.2 Performance Evaluation	 44

only two thirds of that in 1 processor. Furthermore, the race check program takes more than 10

times of execution time than the original program when both of them are running on 32 processors.

Why is the overhead of race check so large in this case? It is due to the combination effect of two

important factors:

1)	 large number of shared variable access The local operation takes very small percentage of

total computation time in the program of the example. The program has a lot of shared

variable accesses and detects more than 200 data races.

2)	 Small number of shared variables As we declared before, our race check program adds lock

and unlock before and after the read/write check to ensure the consistency of the access

history. Since the lock for each share variable only allows one thread to use and update its

history entries, the lock overhead will be extremely large when there are a lot of conflicting

accesses on a small number of shared variables.

As a result, the performance of our parallel nondeterminator downgrades significantly.

5.2.3 Testing summary

The testing has successfully conducted the correctness and effectiveness test on our parallel nonde-

terminator.

In the correctness testing part, we analyze the data race reporting mechanism we used in our

parallel nondeterminator and compare the results of data races between the cilk program with and

without race check. In the meantime, the execution time of the cilk program with/without race

check is shown in the figure. The results from the test case work as a sample show the correctness

of our parallel nondeterminator.

In the effectiveness testing part, we evaluate the performance from three aspects: the change of

recursion depth, the change of calculation delays and the influence on critical path and parallelism.

We have listed and analyzed the results in details in the previous three sub sections. The check

and lock operations in the shared variable access are the main sources to introduce overhead to our

race check program. In most of our testing cases, the program with our race check only takes the

execution time 1 to 1.8 times of the original program in both serial and parallel executions. It indi-

cates that the overhead of our race check routines is pretty small and our parallel nondeterminator

works well.

Chapter 6

CONCLUSIONS

Detecting data race is very important for debugging shared-memory parallel programs, because

data races result in unintended nondeterministic execution of the program. Our MNR Labeling

algorithm provides a dynamic on-the-fly mechanism to check for the determinacy races during the

parallel execution of a Cilk program.

The efficiency of on-the-fly detection technique primarily depends on the time needed to determine

whether a data race exists there and the space needed to store the necessary information. Our

Parallel Nondeterminator has the time complexity – O(1) for each sync, O(N) for each spawn and

O(lgN) for worst case access check. The space complexity is given by O(V + min (NT, NP)).

From the experimental results, we notice that regardless of the changes of the parameters, such as

recursion depth, number of spawns, calculation delay and number of processors, the execution time

ratio is generally within the range from 1 to 1.8 based on our testcases. These experimental results

gave strong support for the efficiency of our Parallel Nondeterminator.

In summary, our Parallel Nondeterminator provides a provable and experimentally good perfor-

mance for the race detection in the parallel execution of the programs written in Cilk.

45

Bibliography

[1]	 Y-K. Jun and K. Koh, ”On-the-fly Detection of Access Anomalies in Nested Parallel Loops”,

in Proc. ACM/ONR Workshop on Parallel and Distributed Debugging, pp. 107–117, 1993.

[2]	 John Mellor-Crummey. On-the-fly Detection of Data Races for Programs with Nested Fork-Join

Parallelism, Supercomputing 91, pp 24-33, ACM/IEEE, Nov 1991

[3]	 M. Feng and C. E. Leiserson, ”Efficient detection of determinacy races in Cilk programs,” in

Proceedings of the 9th Annual ACM Symposium on Parallel Algorithms and Architectures

(SPAA’97), (Newport, Rhode Island), June 22–25, 1997

[4]	 G.-I. CHENG, M. FENG, C. E. LEISERSON, K. H. RANDALL, AND A. F. STARK, Detecting

data races in Cilk programs that use locks, in Proceedings of the Tenth Annual ACM Symposium

on Parallel Algorithms and Architectures (SPAA), Puerto Vallarta, Mexico, June 1998

[5]	 Anne Dinning and Edith Schonberg. An Empirical Comparison of Monitoring Algorithms for

Access Anomaly Detection. In Second ACM SIGPLAN Symposium on Principles Practice of

Parallel Programming(PPOPP), pages 1–10, February 1990

[6]	 Dejan Perkovic and Peter J. Keleher. Online data-race detection via coherency guarantees. In

Proceedings of the Second USENIX Symposium on Operating System Design and Implemen-

tation(OSDI’96), pages 47–58, October 1996

[7]	 Kim, J., and Y. Jun, ”Scalable On-the-fly Detection of the First Races in Parallel Programs,”

12nd Intl. Conf. on Supercomputing, pp. 345-352, ACM, July 1998

[8]	 Dejan Perkovic, Perter J. Keleher. A Protocol-Centric Approach to on-the-fly Race Detection.

IEEE Transactions on Parallel and Distributed Systems,Vol 11, pp.58-69, 2000

46

