
6.895 Theory of Parallel Systems

Partial Parallelization of Graph Partitioning Algorithm METIS
Term Project	 Zardosht Kasheff

Abstract

The METIS graph partitioning algorithm has three stages. The first stage, coarsening, takes a
large graph, with vertices |V | and edges |E|, and creates successively smaller graphs that are good
representations of the original graph. The second stage partitions the small graph. The third stage,
refinement, projects and refines the partition of the smaller graph onto the original graph. We present
implementation details of a parallel coarsening algorithm that adds �(|V |) parallelizable work to the
original algorithm. we add �(|E|) serial work for optimal performance that limits our program to
being 2.72 times faster on 8 processors than 1 processor, and 1.22 times faster on
8 processors than the original algorithm. We present issues with parallelizing refinement along with
suggestions towards dealing with the issues.

1 Introduction

Consider a graph G0 with sets of vertices V and edges E. Edges and vertices may have weights. Partitioning
into n partitions entails dividing the vertices of V into n disjoint subsets such that the sum of the vertex
weights in each partition is roughly equal. The goal is to find a partition with a low edge-cut. The edge-cut
of a partition is the sum of the weights of edges whose vertices lie in different partitions.

1.1 METIS Algorithm [1]

METIS is a graph partitioning algorithm developed at the University of Minnesota by George Karypis.
METIS consists of three stages: coarsening, initial partitioning, and refinement. The idea behind METIS is
to create successively smaller graphs G1, G2, . . . , Gk from G0, partition Gk in very little time, and project
the partition back onto the G0, while refining at each step. Figure 1 illustrates the method.

METIS has three stages:

1.	 Coarsening. The original graph, G0, is transformed into sequentially smaller graphs G1, G2, . . . Gk

such that |V0| > |V1| > |V2| > . . . > |Vk |. Gk is meant to be a good representation of G0. Theoretically,
a great partitioning of Gk represents a fairly good partitioning of G0. Coarsening along with refinement
constitutes roughly 95% of the serial runtime.

2.	 Initial Partition. Gk is partitioned. Gk is small enough such that this stage is completed very quickly.
This partitioning constitutes roughly 5% of the serial runtime, thus its details are unimportant.

3.	 Refinement. The partition Pk is projected back onto Pn−1, . . . , P0. After each projection Pi, the
partitioning is refined using a greedy algorithm. Each partition Pi for 0 � i � k − 1 is refined before
projecting to Pi+1.

1.2 Graph Representation in METIS

In METIS, graphs are represented with arrays. Given a graph of v vertices, vertices are implicitly labeled
0, 1, 2, . . . , v − 1. Information on edges is held in two arrays: xadj and adjncy. For all vertices i, the list of
vertices adjacent to i are listed in the array adjncy from elements xadj[i] inclusive to xadj[i+ 1]) exclusive.
Thus, for xadj[i] � j < xadj[i + 1], the value of adjncy[j] is connected to the vertex i. The array adjwgt
holds the edge weights, thus adjwgt[j] holds the edge weight of adjncy[j]. Figure 2 illustrates an example
of a graph. Figure 3 is its associated representation.

-1

Figure 1: Various phases of partitioning algorithm.

2 2
0 1 2

2
 2
 2

3 4 5

2
2
 2

6 7 8

2 2

Figure 2: Sample graph.

1 3 0 4 2 51 ...

0 2 5 7 ...xadj:

adjncy:

Node 1Node 0 Node 2

adjwgt: 2
 2
 2
 2
 2
 2
 2
 ...

Figure 3: Array representation of sample graph.

-2

2 Implementation of Parallel Coarsening

As explained in Section 1, the coarsening stage of METIS consists of creating successive coarse representations
of a graph. We focus on parallelizing the process of creating a coarse graph G1 from graph G0.

2.1 Coarsening Algorithm.

0

3

6 7 8

5

21

4

2 2

2

22

2 2

2

2 2
2

4

1 2

3

2

1

2

4

0

3

2

2

2

2 2

4

2

1
2

0

Node Labels of Coarser Graph

Matching, Writing Coarse Graph
Mapping

Figure 4: Example of coarsening a grid to a smaller graph.

The graph G1 is created by collapsing as many pairs of connected vertices of G0. A simple example is
illustrated in Figure 4. Formally, coarsening consists of three stages: matching, mapping and creating.

The first stage is matching. We greedily find as many pairs of connected vertices as possible, calling
each pair a match . Selecting the pair (i, j), means i is matched with j and vice versa. Pairs of vertices
are matched until no vertex with an unmatched adjacent vertex remains. If a vertex i has no unmatched
adjacent vertices, i is matched with itself. The matching stage of Figure 4 is composed of finding pairs of
vertices to circle.

Vertices are matched two ways. A vertex may be matched to a random unmatched adjacent vertex,
(called random matching), or to the unmatched vertex with the heaviest edge weight (called heavy-edge
matching). The information is stored in the array match. We require for all i such that 0 � i < |V |,
match[match[i]] = i. A consistent matching satisfies this requirement, an inconsistent matching does
not. The match array of Figure 4 is in Figure 5.

03 2 1 5 4 7 6 8match:

Figure 5: match array of earlier example.

The second stage is mapping. Each matched pairs of vertices of G0 will represent one vertex of G1. Thus,
we need implicit vertex labels for the vertices of G1. If G1 is to have v1 vertices, matched vertices i and
j must map to a unique k such that 0 � k < v1. The numbers outside matched pairs in Figure 4 are the
mapping. The information is stored in the array cmap. We require cmap[i] = cmap[match[i]]. The resulting
array cmap of the example above is illustrated in Figure 6.

33 1 1 4 4 0 0 2cmap:

Figure 6: cmap array of earlier example.

The third stage is creating the coarser graph. The mapping determines the number of vertices of G1.
An upper bound on the number of edges of G1 is the number of edges in G0. All information needed is in

-3

the arrays described above. Thus all that is required is to iterate through the edges of G0 and write the
appropriate information for G1.

2.2 Parallelizing of Creating the Coarse Graph.

We focus on parallelizing the final stage first because its runtime is the longest of the three stages. We
cross two issues while parallelizing this stage. The first issue is the data representation. The current data
representation does not lend itself to parallelization, thus we modify it. The second issue is massive data
writing in parallel. We analyze data allocation and data placement policies to increase parallelism and
scalability.

2.2.1 Modifying the Data Representation

If the array adjncy for G1 may be written, then so can the array adjwgt for G1. So we focus on issues
filling xadj and adjncy. Figure 3 the data representation of a graph. Suppose one processor is to write the
adjacency list for vertex 0 and another processor is to write the adjacency list for vertex 2. We know the
list for vertex 0 is at the beginning of the array adjncy, but without a preprocessed xadj array, a processor
will not know where in adjncy to write the information for vertex 2. Thus, xadj must be preprocessed to
parallelize this stage.

Preprocessing xadj is expensive. To know xadj[i], we must know exactly how many edges vertices
0, 1, . . . , i− 1 have. Thus, for each matched pair (j, k), this requires iterating through all vertices adjacent
to j and k. The runtime of this additional work for all matched pairs is �(|E|).

Calculating an upper bound on the number of edges a vertex will have is simpler. For matched vertices
(j, k) of G0, the number of edges its mapped vertex of G1 will have is at most the sum of the number of edges
j and k have in G0. This is easily calculated in xadj. Needing to only calculate an upper bound, as will be
shown in Section 2.3, requires �(|V |) additional parallelizable work. Because E > V , this is preferable.

Consider the following representation. For graph G0 with v0 vertices, let xadj have 2v0 elements. Cur
rently, for j such that xadj[i] � j < xadj[i + 1], adjncy[j] is adjacent to i. Instead, let for j such that
xadj[2i] � j < xadj[2i + 1], adjncy[j] is adjacent to i. An illustrated example of the new representation is
in Figure 7.

Node 0 Node 1 Node 2

xadj:

adjncy: 1 3

0 2 10863

51240 ...

...

Figure 7: Modified graph representation with two pointers into adjncy array per vertex instead of one.

The advantage to this representation is xadj[2i] needs to be at least how many edges the vertices
0, 1, . . . , i − 1 have. Preprocessing such an array is simple. We preprocess the array in the mapping stage
(Section 2.3).

In this stage, T1 = �(|E|) and � = �(lg |E|).

2.2.2 Data Writing

Consider the following piece of cilk code that allocates and fills a large amount of memory with some value.
Because the current stage of the coarsening algorithm requires mostly data writing, analysis of a procedure
such as this is necessary to achieve speedup in this stage.

cilk void fill(int *array, int val, int len){
if(len <= (1<<18)){

-4

memset(array, val, len*4);
} else {

spawn fill(array, val, len/2);

spawn fill(array+len/2, val, len-len/2);

}
}
enum { N = 200000000 };
int main(int argc, char *argv[]){
x = (int *)malloc(N*sizeof(int));

mt_fill(context, x, 25, N);/*******Print time taken***********/

mt_fill(context, x, 25, N);/*******Print time taken***********/

}

Note we run the procedure fill twice. Table 1 has results achieved.

1 proc 2 proc 4 proc 8 proc
First Run 6.94 5.8 5.3 5.45

Second Run 3.65 2.8 1.6 1.25

Table 1: Experimental timing results of both runs of fill on array of length 2 · 108 . All values are in seconds.

Note that the procedure fill scales better when being run on memory that has already been set to some
value. As a result, before writing the coarse graph, we initially set the data that will represent the coarse
graph to 0. This adds �(|E|) serial work to the coarsening algorithm. Reasons for this are not fully known.
It is possible this action is not required on other multi-processor machines.

Data placement policies are also an issue. The default policy, first touch placement , allocates pages
of memory on the memory module on which the process that first touches it is run. Note that in the above
code, one processor allocates memory. Thus, with first touch placement, the memory is allocated on one
memory module. When all other processors try accessing the memory, memory contention occurs.

A better policy is round-robin placement , which allocates pages of memory on all memory modules
in a round-robin fashion. Table 2 has results achieved using round-robin placement.

1 proc 2 proc 4 proc 8 proc
First Run 6.9 6.2 6.5 6.6

Second Run 4.0 2.6 1.3 .79

Table 2: Experimental timing results of both runs of fill on array of length 2·108 using round-robin
placement. All values are in seconds.

We achieve best performance with round-robin placement run on memory that has already been set to
some value.

2.3 Parallelizing Matching

Pseudo-code for random matching and heavy-edge matching are similar:

foreach vertex u
if(vertex u unmatched){
find unmatched adjacent vertex v; /***whether v random or heaviest such vertex irrelevant**/
match[u] = v;

-5

match[v] = u;

}

Determinacy races are the only issue. If u tries to match with v while v concurrently tries to match with
some other vertex w, our match array may have inconsistencies. We choose to correct inconsistencies in the
mapping stage as opposed to use locks to ensure inconsistencies do not occur. In the mapping stage, for
each vertex i, we check if match[match[i]] == i. If not, we set match[i] = i. This adds �(|V |) parallelizable
work, which is preferable to using locks. Using locks requires initialization and allocation overhead, along
with meticulous coding to avoid deadlock contention. Lock contention, an inevitable result from using locks,
limits speedup.

2.4 Parallelizing Mapping

Three tasks compose this stage: correcting inconsistencies in match array, creating cmap array, and prepro
cessing information for xadj of G1. For now, let us assume the match array has no inconsistencies and xadj
of G1 need not be preprocessed. Consider the following psuedo-code that performs mapping and matching
concurrently:

if(node u unmatched){
find unmatched adjacent node v;
LOCK(maplock);
match[u] = v;
match[v] = u;
cmap[u] = cmap[v] = num;
num++;
UNLOCK(maplock);

}

This code does not scale well on multiple processors because each processor will try to access the same lock.
For this reason we separate the matching and mapping phases. Given a consistent match array, we can create
cmap using a variant on a parallel prefix algorithm.

2.4.1 Parallel Prefix Algorithm

Given an array a, of n elements, the goal is to modify a such that a[i] �
�i

j=1 a[j]. If all elements in a are
initially 1, once modified, a[i] = i + 1 for 0 � i < n. A trivial serial algorithm is presented below:

void prefix_serial(int* array, int len){
int i;
for(i = 1; i < len; i++){

array[i] += array[i-1];

}

}

We present a parallel algorithm. We use a divide and conquer algorithm. For array a0 and base case of
size b, run prefix_serial on blocks of size b and store the sum of each block in another array a1. Recursively
solve the parallel prefix of the array a1. Lastly, increment all values in a block of size b by its associated
value in a1. An illustrated example on an array of length 9 and base case of size 3 is in Figure 8.

The parallel algorithm has twice as much work as the serial algorithm, but has critical path �(lg n). The
total work is �(n).

-6

Figure 8: Example of parallel prefix.

2.4.2 Mapping Scheme

Our scheme for mapping is as follows.

1. Initially, for all i, let cmap[i] = 1 if match[i] � i, -1 otherwise.

2. Run a parallel prefix algorithm on values of cmap that are not -1.

3. For all i such that cmap[i] = −1, let cmap[i] = cmap[match[i]].

2.4.3 Mapping Algorithm

Our algorithm uses a variant on the parallel prefix algorithm presented in Section 3.4.1. It makes three
passes over the data. For clarity purposes, we assume a consistent match array.

1. First Pass:

•	 For blocks of size b, sequentially enumerate values of cmap[i] for i such that i � match[i].

•	 For all other i in block, set cmap[i] = -1.

•	 Store number of such i in array helper.

2. Recursive Case: Run prefix algorithm on resulting array.

3. Second Pass:

•	 For i such that i � match[i], increment cmap[i] by its associated value in helper, thus setting the
correct value for cmap[i].

4. Third Pass:

•	 For i such that i > match[i], set cmap[i] = cmap[match[i]].

For a matched pair (i, j), assuming i < j, define i to be the major component and j to be the minor
component . We take a third pass over the data to set cmap of minor components of matchings to avoid false
sharing. During the second pass, a minor component has a cmap value of -1. We cannot set the correct value
of cmap at that moment because the cmap value of the major component may or may not be evaluated by
another processor yet. Thus, to correctly set the value in the second pass, we would need it to be set along
with the major component. That is, we not only increment cmap[i], but then set cmap[match[i]] = cmap[i].
cmap[match[i]] may be in another processor’s cache. Changing its value would invalidate that processor’s
cache, thus leading to false sharing.

-7

2.4.4 Fixing match and preprocessing xadj

We can fix match in the first pass of our mapping algorithm. During the first pass, we check if i � match[i].
Before doing so, we can check if match[match[i]] == i. If not, we set match[i] = i.

To preprocess xadj, we create another array numedges. numedges[k] holds an upper bound on the number
of edges vertex k− 1 of G1 will hold. Set numedges[0] to 0. Say matched pair (i, j) maps to k. Thus cmap[i]
= k. In the second pass of our mapping algorithm, we set numedges[k] to be the number of edges of i in
addition to the number of edges of match[i]. This information can be found in constant time from xadj of
G0.

We run a prefix algorithm on numedges to attain the preprocessed list we desire. Thus, numedges[i] =
xadj[2i] for xadj of G1. The prefix algorithm we run can be serial because its total runtime is very small
compared to the rest of the coarsening algorithm.

2.4.5 Mapping Conclusions

In serial coarsening, mapping and matching are done concurrently, thus this entire stage is additional neces
sary work to parallelize the algorithm. The work of this stage is �(|V |) and the critical path is �(lg |V |).

3 Parallelizing Refinement

As explained in Section 1, refinement entails projecting a partition of a coarse graph, G1 to a finer graph
G0 and refining the partition of G0. We present the serial algorithm for refinement, issues with parallelizing
refinement, and possible ideas to explore for solving them.

3.1 Refinement algorithm

The first step is projecting the partition of G1 onto G0. Say G1 is partitioned into n disjoint subsets. For i
such that 0 � i < |V1|, we have where[i] = x, where 0 � x < n. x represents the partition vertex i belongs
to. where holds the partitioning information. Given matched pair (i, j) of G0 maps to k of G1, projecting
the partition entails setting where[i] and where[j]| to where[k].

The second step is refining the partition of G0. Define a boundary vertex to be connected to some
vertex in a different partition and an internal vertex to be connected to only nodes in the same partition.
We iterate over all boundary vertices, testing if moving the vertex to another partition lowers the edge-cut.
If so, we move the vertex to the partition that reduces the edge-cut the most. We iterate over the boundary
vertices a constant number of times.

To facilitate this step, during projection, we preprocess the list of boundary vertices into an array. For
each boundary vertex, we calculate the sum of the weights of edges that lie in its partition, called its internal
degree . For each other partition the boundary vertex is connected to, we calculate the sum of the weights of
edges that lie in that partition, called the external degree . Each boundary vertex has one internal degree
and up to n− 1 external degrees. These degrees are stored in an array.

3.2 Algorithmic Parallelizing Issues

Projecting the partition entails only data writing and very little computation. A straightforward paral
lelization of this step seems feasible using the same methods in parallelizing the graph writing stage of
coarsening.

Parallel refinement can lead to increasing the edge-cut. Consider Figure 9. Concurrently moving nodes
2 and 3 leads to an increase in the edge-cut.

To ensure moving vertex i does not increase the edge-cut, we must lock i along with all adjacent vertices.
This creates huge locking overhead and is not recommended. Any parallel refinement solution should assume
such cases are infrequent (assume |V | >> p where p is the number of processors). Should something like this

-8

5

2
3

2

5

3

32

0 1

23

0 1

Figure 9: Example of problem with parallel refinement.

occur, not only will its effect to the edge-cut most likely by minimal, but future refinements of the graph
will likely correct the error. Thus, we suspect allowing such errors are tolerable.

3.3 Implementation Parallelizing Issues

The current implementation lends itself very well for serial execution, but has issues for parallelization.

3.3.1 Maintaining List of Boundary Vertices

Currently, boundary vertices are stored in an array. When a vertex’s partition changes, all previously internal
adjacent vertices become boundary vertices. We wish to check these vertices in future iterations. Appending
them to the end of an array will be difficult because other processors will be trying to append other vertices
as well, causing concurrency issues. This seems only to be resolved with a unique lock. Once again, this will
cause a bottleneck and limit parallelism.

If possible, we would like to be able to maintain some data structure that holds all boundary vertices
such that it may be iterated in parallel and appending is cheap. A simple array does not satisfy these
requirements. When the number of partitions is small, in practice, the number of boundary vertices will be
significantly less than the number of total vertices. If possible, we would like to avoid iterating through all
vertices.

3.3.2 Keeping Degrees Updated

Examples such as Figure 9 create determinacy races for external and internal degrees of vertices. Inaccurate
degree information may prevent necessary vertex moves or lead to harmful vertex moves. We do not know
how often this might occur during refinement. We wish to avoid inaccuracies in degree information because
correcting them would be expensive. We may use lock each degree before modifying it, but this entails
allocating and initializing |V |n locks.

Degrees are created to save repeated computation over repeated iterations. An efficient parallel imple
mentation of refinement that uses these degrees is currently open to research.

4 Timing Results

Table 3 presents timing results on the total work and critical path of the parallel stages of coarsening a
1600x1600 grid. Because critical path is being measured, the values measured are higher than the values in
practice. Still, they demonstrate potential for parallelism.

-9

5

Table 4 presents timing results of coarsening a 1600 by 1600 grid.
One experiment uses first-touch placement and memset all arrays to 0 before operating. Table 5 breaks

down runtime of each stage.
Another experiment uses round-robin placement and memset all arrays to 0 before operating. Table 6

breaks down runtime of each stage.
Note that despite having more total work than first-touch placement, round-robin placement achieves

better speedup and as good performance on multiple processors.

Conclusion

We present implementation details of a parallel coarsening algorithm. We add �(|V |) parallelizable work to
the coarsening stage to enable parallelization. To run efficiently we add �(|E|) serial work so that the
algorithm scales more efficiently. The �(|E|) work severly limits scalability.

We present issues with parallelizing refinement and present paths for future research towards handling
the issues. For a Masters of Engineering thesis, I propose to develop and test an efficient parallel refining
algorithm along with explore optimizations to the current coarsening algorithm.

References

[1] George Karypis and Vipin Kumar. Multilevel k-way partitioning scheme for irregular graphs. Journal of
Parallel and Distributed Computing, 48(1):96–129, 1998.

T1 T� T1/T�

3111
mapping 692

coarsening 1.7ms 1565

matching 1.82 s 517 us
1.44 s 1.09 ms
2.67 s

Table 3: Total work and critical path timing results of a 1600x1600 grid.

10

1600x1600 3.57 6.35 4.05 2.92 2.33
serial runtime 1 proc 2 proc 4 proc 8 proc

Table 4: Experimental timing results of coarsening a 1600 x 1600 grid. All values are in seconds.

.39 .39 .39 .39

.87 .44 .27 .16
mapping 1.07 .56 .33 .24

.07 .07 .07 .07

.95 .95 .95 .95
2.51 1.30 .74 .41

1 proc 2 proc 4 proc 8 proc
memset for matching

matching

numedges
memset for writing
writing coarse graph

Table 5: Experimental timing results of coarsening a 1600x1600 grid using first-touch placement.
All values are in seconds.

.43 .43 .43 .43

.99 .49 .28 .15
mapping 1.13 .59 .36 .22

.07 .07 .07 .07
1.08 1.08 1.08 1.08
2.65 1.39 .70 .38

1 proc 2 proc 4 proc 8 proc
memset for matching

matching

numedges
memset for writing
writing coarse graph

Table 6: Experimental timing results of coarsening a 1600x1600 grid using round-robin placement.
All values are in seconds.

11

