
6.895 Theory of Parallel Systems Project Paper

Conversion of NSP DAGs to SP DAGs
Sajindra Jayasena and Sharad Ganesh

Abstract

Random multithreaded NSP task graphs cannot be modelled in SP-based parallel programming
models. In this report we present a new algorithm for converting NSP DAGs to SP DAGs. Our
analysis establishes an upper bound of a factor of 2, on the increase in critical path length(W∞).
However, the total work (W1) remains the same. We also evaluate an implementation of our
algorithm and perform subsequent analysis with real-world models of task graphs and random
task graphs which provide encouraging results as compared to previous research. Specifically,
we prove the correctness and analyze computational complexity of our algorithm followed by a
heuristic based variant for further performance enhancements.

1 Introduction

A parallel multithreaded computation, represented as a non-series parallel DAG, presents inherent difficul-
ties in performing cost estimations, analysis, scheduling and structured programming[1]. Also, most of the
current multithreaded programming models like cilk [2] are based on series-parallel DAG modeling of the
computations. However, most of the real world problems that are modeled for parallel system solutions are
non-series-parallel DAGs. This exposes a lacuna which necessitates the development of a mechanism for an
efficient translation technique from the NSP model to an SP model. The SP model enables the analysis
and execution of such programs in the underlying multithreaded environment while preserving the original
semantics of the computation. However, it should be noted that we mainly intend to address the conversion
of NSP DAG representing the task nodes of a computation to an SP DAG. Further representation is required,
if it is to be modeled in a particular multi-threaded computational model like cilk [2][3].

The remainder of the report is organized as follows. Section 2 introduces some terms and concepts used by
the algorithm. Section 3 presents our approach and strategy, in addition to the proof of concepts used by
our algorithm. Section 4 presents the high-level algorithm. Section 5 presents the proof of correctness for
the algorithm, while Section 6 discusses the complexity analysis. Section 7 presents a qualitative assessment
of the algorithm. Section 8 outlines the empirical analysis followed by some concluding remarks.

2 Some terms and concepts:

Here we outline some basic definitions that are used in the subsequent sections of the report.

Definition 1 Directed acyclic graph (DAG)

A graph G is a pair (V, E), where V is a set of vertices, and E is a set of edges between the vertices E =

(u, v)|u, v ∈ V . The graph does not allow self-loops, adjacency is irreflexive, i.e. E = (u, v)|(u, v ∈ V)

∧
(u �
= v)

and has no path which starts and ends at the same vertex.

A DAG describes the structure of a parallel program. The nodes of the DAG represent tasks that the pro-
cessors must complete, and the edges represent the dependencies between the tasks. Thus, if there is an edge
(u, v) ∈ E, then v cannot be executed until after u completes. In this case we way that u is a parent of v.

Project Paper-1

Definition 2 Series parallel DAG(SP DAG)

A series-parallel DAG G’ = (V, E) is a directed acyclic graph with two distinguished vertices, a source ’s’

and a sink ’t’. A family of series parallel graphs are described using the following grammar:

A series parallel DAG G’(V, E) is one of the following:

A single edge extending from s to t, that is, V = {s, t} and E = {(s, t)}.

Two series parallel graphs G1 and G2 composed in parallel. The sources s1 and s2 of G1 and G2 are merged

into a single source s, and the sinks t1 and t2 are merged into a single sink t.

Two series parallel graphs composed in series . The sink t1 of G1 and the source s2 of G2 are merged into

a single node.

Definition 3 Non-series parallel DAG(NSP DAG)

A graph G that cannot be reduced to a representation addressed by the SP DAG.[Definition 2].

Definition 4 Critical path (W∞)

The number of nodes in the longest chain in the DAG G.

Definition 5 Total Work (W1)

The total number of nodes in the DAG G.

Definition 6 Level of a vertex in a DAG (LEVEL(v))

The longest path length from the root to the vertex v.

Definition 7 Predecessor(s) of a vertex (PREDECESSOR(v))

The vertices that precede v, in a topological ordering of the DAG.

Definition 8 Successors(s) of a vertex (SUCCESSOR(v))

The vertices that succeed v, in a topological ordering of the DAG.

Definition 9 Sync node

A vertex with indegree ≥ 2.

Definition 10 Spawn node

A vertex with outdegree ≥ 2.

Definition 11 Path

A path is a sequence of edges that defines a possible way through connected vertices from one vertex to another.

Definition 12 Spawn Set (SPAWN(v))

The set of immediate P REDECESSOR(v), from which v was spawned. This identifies the nodes that sync

from multiple-independent execution paths.

Definition 13 Disjoint vertices

Two vertices vi and vj are disjoint if:

SP AW N(vi) ∩ SP AW N(vj) = φ

Definition 14 Disjoint sync node(DSN)

A node is a disjoint sync node if any of its parents are disjoint vertices.

Definition 15 Global-Level

The level of the most-recent disjoint sync node in a topological ordering of the DAG.

Project Paper-2

Definition 16

C bit of a vertex: Represents the resolved status of a vertex.

R bit of a vertex: Represents node(s) in the NSP DAG, which are the most recently processed vertices in the

resultant SP DAG.

D-bit of a supernode: The D bit of a super node S is set when ∃ vertices vi, vj ∈ S, such that vi, vj are

disjoint vertices.

Definition 17 Depth(G)

The level of the leaf vertex v ∈ G.

3 Approach and Strategy

This section addresses the main concepts and strategies that are the cornerstones of our algorithm. Each
conceptual idea is justified by its correctness and ability to perform a correct and efficient transformation.

3.1 Breadth first task node visitation (BFT)

Our high level algorithm is based on the breadth first traversal of the task nodes in the NSP DAG. The
objective is to identify non-interdependent task nodes that could be run in parallel. At each level, the al-
gorithm resolves the NSP problems (Appendix A), if it exists. There is a subtle difference in the way our
algorithm performs the breadth-first traversal of the graph as compared to the normal BFT. In the BFT
we follow, a node is enqueued if and only if all its parents have been enqueued and processed in a previous
iteration.

The following lemma shows that all nodes considered in an iteration of the breadth first traversal are in
the same level.

Lemma 1 Let v1, v2, v3, ...vm be the vertices considered in a particular iteration of the BFT.

Then, ∀ i,j where i,j ∈ {1... m}, Level(vi) = Level(vj), i �= j

Proof A breadth-first traversal of the DAG G is a level-wise traversal, which does not advance to the
next level, Level(j) unless and until all the vertices {V} of Level(i) [i < j] are visited and colored. By the
inherent method of breadth first traversal, the parents of a vertex are discovered and colored before their
children are discovered and colored. Hence, all the nodes at a particular BFT are at same level, due to the
way in which breadth-first traversal discovers the vertices.

Further the following Lemma proves that the precedence relation is maintained during each iteration of the
BFT.

Lemma 2 The resolution of a vertex v preserves the precedence relation.

Proof A vertex v ∈ G is resolved only if Parents(v) have been colored and resolved. A vertex v ∈ V
might have multiple paths p1, p2, ...pn. A vertex v is colored and resolved only if the vertex has been reached
through the longest path pi. Thus, without loss of generality, if it has been reached through the longest
path, all the other paths to vertex v, would have been traversed [Lemma 1]. Thus, the resolution of a vertex,
would never lead to a situation that would violate the precedence.

Project Paper-3

Now we would introduce another set of definitions.

Definition 18 Vertex Coloring
A vertex v in the NSP DAG G is C-colored if it has been traversed and resolved. Further a vertex is resolved
if it is added to the resultant SP DAG G’. The resolved status is represented by a bit known as the C-bit,
associated with each vertex of the NSP DAG. If the C-bit of v is set, we call v a colored vertex.
Further a vertex is R-colored (using a R-bit) if it has already been resolved and does not have any descendants
upto the current processing level in G’. The R-coloring propagates down at each iteration to mark the last
frontier of processing in G’, where all those parents of the newly R-colored vertices, are un-colored(R = 0).

This results in another definition.

Definition 19 Augmented-In-Degree of a vertex
The number of colored parents incident on the vertex v.

To achieve the proven objectives in an efficient manner, the Vertex Coloring approach was achieved using
a bit vector implementation.

This is shown below in Figure: 1.

iteration I	 iteration I +1

C

C C C+
R

C+
R

C+
R

7

C

C C C

C 6

5 6 C+
R

C+
R

C+
R

Figure 1: Vertex coloring in two consecutive iterations of BFT

3.2 SuperNode concept

As per the previous discussion,at each level,the NSP issues would be resolved Iteratively.Inorder to identify
and group non-interdependent task nodes at each level,the concept of supernode is proposed.Each supernode
is an encapsulation of task nodes with the following properties.
•	 There are no interdependencies between the task nodes in a supernode.

In Figure:2,there are no interdependencies between nodes 2, 3, 4. Therefore they are grouped into one
supernode. But in Figure: 3 since there is a dependency between nodes 3 and 4 , node 4 would not be
considered for the super node with node 3 , even though it lies in the same depth as 3 from the root.
•	 There is at least one common parent between every task node in a supernode .

Therefore nodes with disjoint parent sets would be in different task nodes. In Figure: 3, task nodes 6,
7 have common parents 1, 2, 3.therefore they are grouped to a single super node. But the nodes 8, 9,
10 have common parents 4, 5. Therefore they are grouped into another supernode.This facilitates in
identifying disjoint tasks that can be run in parallel, without reducing the parallelism.

In order to construct the disjoint supernodes in an efficient manner, the Disjoint-Set Forest implementation[4]
for disjoint sets , we used the ”Union By Rank” and Path Compression” heuristics. The basic operations
makeset(v) ,union(v1,v2) and find-set(v) have been implemented inline with the supernode concept.

Project Paper-4

′

Figure 2: task nodes in a Supernode

1 2

6 7

43 5

8 9 10

Two SuperNodes

Figure 3: disjoint supernodes

3.3 Promoting a Sync node

After creating the supernodes, the NSP problem(s) in each supernode would be generally addressed at each
supernode level (except in the case of a disjoint sync node, which is addressed later). While solving the NSP
issues at each supernode, we select one of the sync nodes , from the set of sync nodes in the supernode, and
promote it as the sync node for the rest of the siblings in the supernode.The procedure is as follows:
•	 Let all the un-synced parents of all the task nodes in the considered supernode sync to the selected

sync node.
•	 All the other siblings in the supernode would be spawned from this sync node. This would result in

adding of an additional synchronization level to the SP graph. The key advantage is that no additional
synchronization nodes are added, thus from task node perspective, T1 is not increased.
This is shown diagrammatically in Figure: 4.

The following proves that this strategy would not violate any existing precedence relationships.

Lemma 3 Among the candidate sync nodes {V } ∈ Supernode s, (if any), let v ∈ {V } be a randomly
chosen sync node. Then,

•	 All parents {P} of {V} can be synced to v’
• ∀ v ∈ {V } − v′ can be safely spawned from the randomly chosen sync node.

without violating the existing precedences.

Proof There does not exist a dependency between the nodes in a supernode(by definition).

∀ vi, vj ∈ Supernode(s), ¬∃ edge(vi, vj), where i �= j

Project Paper-5

′ ′

′

′
′ ′ ′

′
′ ′

′ ′

′

′

1 2

4 5

3

6

1 2

4 5

3

6

1 2

5

31 2

5

3 1 2

5

3

64

1 2

5

3

64
Select a candidate

sync node &
Sync the un-synced

No dependencies

parents to it Spawn rest of the nodes
in the Supernode from sync node

Figure 4: Promoting a sync node

Therefore one of them can be randomly chosen as a sync node, and the others can be spawned from this
chosen sync node. However, the chosen sync node, acts as the new sync node for all the parents of the sibling
nodes in the supernode. Since, the parents of all the sibling sync nodes, have synced to the chosen sync
node, the spawning of the the sibling nodes does not violate the precedence relation. The spawning of the
siblings from the chosen sync node leverages the parallelism in the execution of the nodes in the supernode.
If v′ is the randomly chosen sync node, all the other siblings {V } − {v } can be spawned from v .

Further, a special kind of NSP problem is the transitive relationship, as explained in Appendix A. Our
solution to this, is to select the sync node in topological precedence as the only sync node of the spawn node
in question, without violating existing precedences. The following lemma proves its validity.

Lemma 4 If a vertex v′ ∈ G, has distinct paths Pi and Pj (Pi �= Pj) to more than one sync node vi and vj

in G and there is a path from vi to vj , such that Level(vi) ≤ Level(vj).This problem is resolved by sync’ing
v to the sync node vi that precedes all the other sync nodes vj.

Proof From the above definition, Level(v′) ¡ Level(vi) < Level(vj) .Since ∃ distinct paths from v to vi,
v to vj and v to vj , there is a indirect precedence between v and vj .Therefore this resembles an seriali

execution sequence v � vi � vj . Hence without violating the existing precedence it is sufficient to model
the dependencies between v , vi and vi , vj . This can be achieved by letting v sync to vi and preserving
the dependency vi � vj .

Now, extending form the above proof we will look at a more general case where, even when the two sync
nodes does not have any transitive relationships, even though they are in different levels.

Claim 1 If a vertex v in SP DAG G’ has already been synced to a sync node vi in G’, v should not have
an edge to another sync node vj in G’, where Level(vi) ≤ Level(vj).

According to lemma 2, all vertices at level Li are resolved before vertices at level Lj where Li < Lj . Therefore
when the BFT is processing level Li, the sync node at level Lj would not be considered for processing. This
precedence would model a execution sequence of v � vi � vj . Therefore as per lemma 3, a candidate sync
node would be selected at level Li which might be vi. Also, since there is no dependency between vi and vj

there can be another vertex vk in the same level Li where ∃ precedence relation between vk and vj and ∃
a path from v’ to vj through vk. Then from lemma 3, all parents of vertices at level Li including v’ would
sync to the sync node, which might be vi or another. Lets look at this in two scenarios.
Case 1: When the sync node at level Li is vi.
By Lemma 3, all the parents including v would sync to vi and the rest of the siblings of vi would spawn
form vi.Then the precedence relation between v’ and vj would be v′ � vi � vj through vi. Therefore there
is no need to represent the precedence v′ � vj again.Thus the precedence holds.

Project Paper-6

′ ′

⋂

Case 2:When the sync node at level Li is not vi.
In this instance,another node vother would be selected. Thus as per lemma 3,all parents including v’ would
sync to vother and all siblings including vi , vk would spawn from vother . Then the precedence relationship
would be v′ � vother � vi and v′ � vother � vk � vj .Since vother is the only sync node for v′ as per lemma 3
and the precedence relation v′ � vother � vk � vj there is no requirement for additional precedence relation
representation for the relation between v , vi and even v , vj .

Therefore it proves the fact that, if a vertex is already synced to a vertex at level Li it is not required to

sync it again to a node at level Lj where Li < Lj .

3.4 Synchronizing to a Disjoint sync node

Definition 20 Disjoint sync node(DSN)

A node is a disjoint sync node if any of its parents are disjoint vertices.

This is an instance where there are sync nodes at the current level, descending from parents that have
different spawn nodes, which had distinct execution paths before the current level. This is shown in the
LHS of Figure 5. Before delving to our transformation strategy, let’s try to prove that there were multiple
parallel execution paths before the current level that ultimately lead to the disjoint sync node.

Lemma 5 Let {Si}, {Sj} be the spawn sets of vertices vi, vj respectively. If {Si}, {Sj} are disjoint sets i.e.
{Si} {Sj} = φ, then vi, vj can have different execution paths until they sync up to sync node s such that,
Level(s) > Level(Vi) and Level(s) > Level(vj).

Claim 2 The vertices vi, vj have parallel execution paths.

Proof Let Gi and Gj be the sub-graphs rooted at the disjoint vertices vi and vj . Since the spawn sets
maintain the spawn vertices from which the vertex vi was spawned, if they are disjoint, then there does
not exist a dependency between the vertices vi and vj . Therefore subgraphs rooted at vi and vj can be
executed in parallel until a sync node is encountered, or if there exists a dependency between the vertices in
the sub-graph. The execution paths are disjoint as long as no dependency exists between the sub-graphs or
a sync node is encountered. In either of the cases, the disjoint spawn-set vertices vi and vj can be synched
to the common sync point, until which parallel execution can proceed.

Then we propose the following synchronization mechanism to resolve the NSP problem when there exists
atleast one Disjoint sync node.

Proposition 1 If there exists a disjoint sync node d, in one of the supernodes si ∈ {S} for particular level
l and let {V} be the set of all the vertices at level l,then we propose that we would select d as the sync node
for level l, and all the vertices P ∈ G’that are not synced yet, to be synced to disjoint sync node d.
Further we would propose that all the vertices v ∈ (V - d) could be spawned from node d. Both of these
operations would not violate the existing precedences in the NSP DAG G.

Claim 3 We claim that this proposition would not violate any existing precedence relationships in the original
NSP DAG.

Proof First this is a simplistic work around for preserving the precedence when multiple disjoint paths
are synced.When disjoint paths are synced, there can be multiple sync structures aggregated together ,thus
making the graph irreducible to a SP structure . Therefore a less complex way of preserving the precedence
is, letting all the vertices P ∈ G’ that are not synced yet (to preserve one sync node constraint for each task
node - lemma 4), to be synced to d. Further from lemma 2, there are no inter-dependencies between the
vertices in {S}. Therefore spawning vertices v ∈ {S − d} from d would not violate any dependencies. Also
we know that levels of all the vertices ∈ {S} are less than all the vertices that are already resolved(lemma

Project Paper-7

1). Thus we claim that this would not violate the precedence, thus the claim is valid.

Further, since the disjoint sync node is the only sync node for the considered level,if there are transitivity
relatioships between vertices that lie above and below the disjoint level needs to be resolved. The following
lemma addresses this issue.

Lemma 6 For all vertices v, and disjoint sync node d, let Level(v) ¿ Level (d). For all the ancestors of v,
who have an edge to v, which topologically precede d, the edges from the ancestor to v can be expunged in G’.

Proof We know that, for a disjoint node, all the nodes that topologically precede the disjoint node are
definitely synced to the disjoint-sync node [proposition 1]. Thus in every topological ordering of the nodes,
the ancestor which is topologically ordered before the disjoint-sync node would always be synced to the
disjoint-sync-node. Hence, even by omitting the parent-child node link, we maintain the graph properties of
precedence by the Contra positive rule of transitivity.

Contra positive of the rule of transitivity:
⎧ ⎨ If Level(Ancestor) < Level(disjoint − sync − node)

Level(Ancestor) < Level(Disjoint-sync-node) = and ⎩
Level(Disjoint − sync − node) < Level(v)

Let’s look at it in the 2 possible scenarios:

Case 1:
A vertex v such that Level(v) > level(D) and Level(D) > Level(P arent(v)). As proven earlier, all nodes v’
where Level(v’) ¡ Level(D) are directly or indirectly synced to D. Then in the original NSP the edge(Parent(v),
v) would be in transitive relationship with {(P arent(v),D)∩{(D, v)}. Therefore this results in an redundant
dependency edge(Parent(v), v). Therefore the edge dependency {(Parent(v), v)} can be expunged.

Case 2:
The vertex v with parents vi and vj , such that Level(vi) > Level(D) and Level(D) > Level(vj). There is a
dependent edge relationship like: (D → vk → vk+1 → vk+2...vk+n → vi).

As proven earlier, all nodes n such that Level(n) < Level(D) are directly or indirectly synced to D. The
when the two dependency edges for v, vi → v and vj → v are considered, there is a transitive relationship
between vj → D → vk → vk+1 → vk+2...vk+n → vi. and vj → v. Therefore the two transitive relationships
can be reduced to a single edgevi → v due to the fact that the other edge is already synched to a previous
level. Therefore since the precedence relationship between v → vi(P arents(v)) and D are preserved as it is
in the NSP DAG, the disjoint set creation and link removal preserves the correctness of the graph.

Now lets examine the following example. As per the figure below, The sync node 9 has parents 5,6 that
have different spawn nodes. Thus node 9 would be considered as a disjoint sync node. We can see that
even though nodes 8, 10 have different parents, that result in different supernodes, the parents of 8, 10 are
also synced to node 9. Further, the nodes 8, 10 are spawned from node 9. Even though this results in an
reduction in parallelism, it ensures a proper SP synchronization structure for the level.

Project Paper-8

1

2 3

4 65 7

9

8 10disjoint sync node

1

2 3

4 65 7

98 10

Figure 5: sync to a disjoint sync node

3.5 Flow of the Algorithm at a high level

After delving on the basic concepts behind the algorithm, following flow chart shows the overall algorithm
at a high level.

Create disjoint Super Nodes

Disjoint Sync
Exists

Sync node
Exists

Select a disjoint
sync (D)

Select a sync node (S)

Y

N

Y

synced parents

Spawn rest from D
node

Spawn siblings from
Sync node

Each level

Attach D to

higher levels
Attach S

parents of sibling nodes in
super node

N

Attach nodes to un-un-synced nodes at to un-synced

Figure 6: Flow of the Algorithm

Project Paper-9

4 Algorithm

This section looks at the intricate details of the algorithm and its implementation mechanism.
Description:
This is the main entry point to the algorithm.This performs the breadth first traversal.

BFT(NSP −DAG G)
1 for ∀ level Li of the NSP DAG G
2 do
3 let V ← set of all vertices at level Li

4
5
6

CreateDisjointSets({V})
let {S} ← supernodes created from CreateDisjointSets

Convert-SP({S})
7 End

Description:
Creates the set of disjoint supernodes that correspond to the disjoint sets of vertices for the level Li during
the BFT. The algorithm is based on the disjoint-set forest algorithm with the following heuristics.
1. Union by rank - During UnionSuperNodes (S1,S2) of two super nodes, the root with fewer nodes
is pointed to the root of the tree with more nods. Rank of a super node is denoted by rank[S].
2. Path compression - During FindSuperNode(v), make each node on the find path in the disjoint forest
point directly to the root without changing any ranks. Let P[v] denote the parent of v in the disjoint-set
forest.

CreateDisjointSets (V ertices {V })
1

2 {Vall} ← {V } ∪ P arents({V })

3 for ∀ v ∈ P arents({V })

4 do MakeSuperNode (v,false)

5 for ∀ v ∈ {V }

6 do MakeSuperNode (v,true)

7 for ∀ edge p → v where p ∈ P arents({V })and v ∈ {V }

8 do

9 Sv ← supernode of v

10 Sv ← supernode of p

11 {S} ← UnionSuperNodes (Sv,Sp)

12 for ∀p ∈ P arents({V })

13 do

14 remove p

15 for ∀ v ∈ {S}

16 do addParentSpawnVector(v)

17

18 End

Description:
Creates a supernode s, with the representative Vertex v with a rank 0.

Project Paper-10

MakeSuperNode (V ertex v, bool isChild)
1 s ← �
2 D bit of s ← 0
3 if (v isChild)
4 then
5 if ∀ parent of v’s C bit ==1
6 then
7 S ← S ∪ v
8 D ← getDisjointParentStatus(v)

9 if (D)
10 then
11 S bit of S ← 1
12
13
14 else
15 if (C-bit of v =1)
16 then
17 S ← S ∪ v
18 rank[s] ← 0.
19 Return s.

Description:
Unites two supernodes p and v, where the supernodes v,p are disjoint prior to the union generation.

UnionSuperNodes (supernode p, supernode v)
1 Sp ← FindSuperNode(p)

2 Sp ← FindSuperNode(v)

3 Let Dp be the D bit of supernode p
4 Let Dv be the D bit of supernode v
5 Let D be the D bit of joined supernode.
6 if (rank[Sp] > rank[Sv])
7 else
8 P[Sp] ← Sv

9 if (rank[Sp] == rank[Sv])
10 then rank[Sv] ← rank[Sv] + 1
11 D ← Bitwise-OR(Dp,Dv)
12 End

Description:
Finds the supernode where the vertex v is represented currently

FindSuperNode(V ertex v)
1 if (v �= P[v])
2 then P[v] ← Findset(P[v])
3 return P[v].

Description: Resolves the vertices V ∈ {S} and adds them to the resultant SP graph G’.

Project Paper-11

= �)

ConvertSP(SuperN odes {S})
1 Let vi be the disjoint sync node returned by Findsync

2 for ∀ vertex v ∈ {S}
3 do
4 If (Parents(v) == �)
5 then G’ ← G’ ∪ v.
6 Bit Vector of v ← < 1, 1 >
7 else
8 do
9 If(∃ disjoint supernode d ∈ {S})

10 then
11 Let s’ ← first supernode ∈ {S}.
12 v’ ← findsync(s’,isDisjointNode)

13 else
14 do
15 for ∀ s’ ∈ S
16 if (ss = findsync(s’,isDisjointNode) �
17 then
18 AttachSyncNode(ss,s)

19 else
20 for (∀ vertex v ∈ s’)
21 AttachNodeToSP(v,Parents(v))

22 End

Description: Finds and returns a random sync node from a supernode s.

FindSync(Supernode s, bool IsDisjointN ode)
1 Sd ← GetDisjointSetSyncNode(S)
2 if Sd �= φ

3 then SetGlobalLevel

4 IsDisjointN ode ← TRUE

5 return Sd

6 elseif ∃ v ∈ S

7 if GetAugmentedInDegree(v) > 1 and Level(P arent(v)) > GlobalLevel

8 then Select the first candidate Sy.

9 Return Sy.

10 else
11 Return null � No sync nodes were found
12 End

Description: Attaches the selected sync node to the parent vertices of all the vertices in the particular
supernode.

Project Paper-12

′

′′
′′)

′′
′′)

′′

′′

AttachSyncNode(V ertex v, Supernode S,)
1 v ← { P arents(v), such that v ∈ S and R − bit(P arents(v)) = 1}

2 if Logical-OR(R-bit(Parents(v))) = 0

3 then

4 v ← v’

⋃
P arents(v) where R − bit(P arents(v)) = 0

5 AttachNodetoSP(v, v

6 elseif Logical-OR(R-bit(Parents(v))) = 1

7 then

8 v ← v’

⋃
P arents(v) where R − bit(P arents(v)) = 1

9 AttachNodetoSP(v, v
10 if {S − v} �= φ
11 then Vp ← {S − v} ∈ S.
12 ∀vi ∈ Vp AttachSyncNode(vi, v)
13 End

Description: Attaches a disjoint sync node to all the vertices with out-degree 0 of the SP DAG G’,
including the parents of all the vertices in the current level.

AttachDisjointSyncNode(V ertex v, Supernodes {S},)
1 Let {V ′} be all the predecessors Pi of all the vertices v in all the supernodes {S}

such that R − bit(pi) = 1.
2 if Logical-OR(R-bit(Parents(v))) = 0.
3 then v ← V’

⋃
P arents(v) where R − bit(P arents(v)) = 0

4 elseif Logical-OR(R-bit(Parents(v))) = 1

5 then

6 v ← v’

⋃
P arents(v) where R − bit(P arents(v)) = 1

7 AttachNodetoSP(v, v′′). .

8 Let {V ′′} be all the vertices in all supernodes {S} excluding the disjoint node v.

9 if {V ′′} �
= φ

10 then AttachNodeToSP(v, V ′′) � attach the rest of the vertices ∈ {V ′′} to v
11 End

Description: Sets the global disjoint level of the DAG G’, to the level of Vertex v.

SetGlobalLevel(V ertex v)
1 GlobalLevel ← Level(v)
2 End

Description:
Finds the first candidate disjoint sync node (if any) d out the vertices in supernode s.

GetDisjointSetSyncNode(Supernode s)
1 for ∀ candidate sync nodes v ∈ S
2 do
3 if GetDisJointParentStatus(v) is TRUE and Level of at least one P arent(v) > GlobalLevel
4 Then return v
5 End

Description:
Returns the status on whether the parents of a particular sync node have different spawn sets.

Project Paper-13

1
2
3
4
5

getDisJointParentStatus(V ertex v)
1 Let spawn vector of v ← �
2 for ∀ parents p of v
3 do
4 if (spawnVector of p �= non-empty spawnVector of v)
5 then
6 return TRUE
7 else
8 spawnVector of v ← spawnVector of p ∪ spawnVector of v
9 Return FALSE.

Description:
Returns the number of parents of a vertex v ,that have already been resolved.

GetAugmentedInDegree(V ertex v)
1 For P arents(v)
2 do
3 if C = 1
4 then degree ← degree + 1
5 return degree
6 End

Description:
Adds a vertex v to the SP DAG G’.

AttachNodetoSP (V ertex v, P arents {P })
1 Let {Pold} be the original parents of v in G.
2 if GlobalLevel = 0
3 then Set the edge pi → v for parents pi ∈ {P }.
4 ∀ pi ∈ {P } Set R = 0.
5 elseif |P | = 1 and Level(P) = GlobalLevel .
6 then Set the edge Pi → v.
7 Reset R ← 0 for pi.
8 else
9 for pi ∈ {P }

10 if Level(P) > GlobalLevel
11 then
12 Set the edge pi → v.
13 R ← 0 for pi.
14 Set R ← 1 for v.
15 Set C ← 1 for v.
16 End

Description:
creates the spawn vector for vertex v .

AddParentSpawnVector(V ertex v, P arents {P })
for pi ∈ {P }
if Outdegree(pi) > 1

then spawnVector(v) ← pi ∪ spawnVector(v).
else

spawnVector(v) ← spawnVector(pi) ∪ spawnVector(v).
6 End

Project Paper-14

5 Proof of Correctness of the Algorithm

The proof of correctness addresses the following two issues.
•	 Preservation of precedence during the conversion from NSP DAG G to SP DAG G’
• SP properties of the SP DAG G’.

In order to prove that the generated graph G’ is correct from the aspects of preserving precedence and SP
property ,the following inductive approach is taken. Two functions are defined in the inductive approach.
Let G be the original NSP DAG and G’ be the SP DAG created at level Li where 0<Li<Depth(G). Let a
precedence relationship between two vertices v1,v2 be denoted as Pred(v1, v2) where v2 ∈ Predecessor(v1).
Let’s define functions to verify the precedence preservation and SP property.
•	 Let precedence(G,G’,Li) be the property;
∀ Pred(v1, v2) where v1,v2 ∈ G and v1 ∈ supernode s ∈ {S} at Li and Level(v1) = Li ≡ ∀ Pred(v1, v2)
, v1,v2 ∈ G’ and level(V1) = Li .

•	 Let SPness(Li) denote that from level 0 to Li (0< Li < Depth(G’)) in G’ , the SP property has
been guaranteed.

Now lets look at the induction based proof.

•	 Base Case
Lets consider the level Li = 0. Then as per lemma 1, 2 vertices {V} at a level L would be resolved
before traversing to the next level L2 (L< L2). Therefore when Li=0, the root node v at level 0 would
be resolved to G’ . Also since node count =1 and Pred(root1, root) = root , precedence(G,G’,0)
holds. Further from the first definition of a SP DAG, G’ is a SP DAG. Thus SPness(0) holds.
•	 Induction Hypothesis

Let assume that at level Li(0 < Li < Depth(G)) the two functions hold. Let them be SP ness(Li) and
precedence(G,G’,Li)

Now let’s consider G where level =Li+1 (0 < Li < Depth(G)) .

In order to ascertain the correctness at LevelLi+1 , all different scenarios of graph transformations that

could be applied in a particular level is considered, case by case.

•	 Case 1
There are no sync nodes in the supernode

Proof
Lets consider precedence(G,G’,Li+1) first. We know precedence(G,G’,Li) holds. Now as
per Lemma 2 ,vertex at a level Li + 1 will only be added when all the resolved vertices v at Li are
resolved and added to G’. Therefore ∀ Pred(v1, v2) for nodes V2 in level Li and nodes in Li+1 in
G’ hold the same as for G after resolving. Therefore precedence(G,G’,Li+1) holds.
Also since there are no sync nodes, all the vertices at level Li would be parallel to each other.
From the third definition of SP DAG, , task nodes that are in parallel constitute a SP structure.
Thus SPness(Li) also holds.

•	 Case 2
There exists at least one sync node v’ out of all the nodes V at level Li+1 in a

particular super node s.

Proof

At each supernode s where there are sync node(s) v’, as per lemma 3, every parent of all the
vertices of s are synced to a selected node v’. Also the vertices ∈ {s - v’ } are spawned from
vertex v’. Since there are no dependencies among v’ and vertices in (s - v’) (lemma 2) there
are no precedence relationships among v’ and vertices in (s - v’) . Therefore as per lemmas 3,
moving the vertices (S - v’) below v’ as spawn edges, does not break the existing precedence even

Project Paper-15

though it creates a new synchronization structure. Further every parent of vertices in s, is synced
to one and only vertex v’. Thus selecting a sync node and promoting it as the only sync node
for every vertex in S does not violate the existing precedence for Level Li+1. Also we know from
the induction hypothesis that precedence(G,G’,Li) holds. Therefore precedence(G,G’,Li+1)
holds.
Now let’s look at the proof of SP property , which would be analyzed in 3 aspects.

– Case 2.1 There are more than one sync node v at level Li+1 in supernode s, and there are
vertices {P} where {P} ⊂ Predecessor(v) who have already been resolved but not synched
to any node s’ where Level(s’) < Li+1 .
Proof
AS per lemma 3, a single node vs, from all vertices {V} ∈ s is selected where all un-synced
parents {Ps} ⊂ {V} would sync to vs . Then from lemma 4 there won’t be any ps ∈ Ps that
syncs to more than one Sync node. Therefore this transformation satisfies the SP property
for level Li+1. But From the inductive hypothesis, sp property is held up to level Li. Then
using inductive hypothesis we can claim that up to level Li+1,SPness(Li+1) holds.

– Case 2.2
There are more than one sync node v at the considered supernode s and there are spawn
nodes {P} where {P} ⊂ Predecessor(v) who have already been resolved. Then there exists
some nodes {Ps} ⊂ {P} that sync to a node v ∈ s as well nodes {V’} where Level({V ’}) <
Level (v) and level({Ps}) < Level(v ’) and there are paths from {V ’} to v.
Proof
As per the lemma 4 and proof of claim 1,a transitivity issue like this, for a spawn node ps

∈ Ps could be resolved by selecting one sync node s , where its level is the minimum out of
all the sync nodes of ps .Then the node ps would have already been synched to s. Then the
same spawn node would not sync to v. Therefore when node v is selected as the candidate
node, the predecessor ps would not need to sync to v, thus preserving SP property for level
Li+1. But From the inductive step, SP property is held up to level Li. Then using inductive
hypothesis we can claim that up to level Li+1,SPness(Li+1) holds.

– Case 2.3
There are more than one sync node v at a considered super node s at Li+1, and there are
spawn nodes {P } ⊂ Predecessor({V}) who have already been resolved. Then some nodes
{Ps} ⊂ {P} , sync to a node v ∈ s as well as node v ’ where Level (v ’) > Level (v).

Proof
This is the inverse of case 2.2.Therefore vertices {Ps} would sync to the candidate node v
rather than v ’, where Level (v) = Li+1 < Level(v′) - (lemma 4 and proof of claim 1). Therefore
vertices {Ps} would only have one sync node, which removes any transitivity issues.
Further when the resolving level equals level (v ’) > Li+1, then {Ps} is already synced to v.
Therefore from case 2, it would not sync again to v ’. Thus at level Li+1 the SP property is
preserved. But From the inductive hypothesis, SP property is held up to level Li. Then we
can claim that up to level Li+1,SPness(Li+1) holds.

• Case 3
There are more than one sync node V at level Li+1 and at least one is a Disjoint sync node.
Proof
Let v ’ be a vertex in super node s ∈ {S} at level Li+1. When a sync node v ’ at level Li+1 is
disjoint , then as per the proof of claim 3 and lemma 5,
• All the parents of all the vertices in all the supernodes at Li+1 and
• All predecessors of nodes at Li+1 which haven’t being synced in G’

would be synced to the disjoint node v. Thus as per previous cases, since there is only one sync
node at level Li+1, SP property is preserved and SPness(Li+1) is held.

Project Paper-16

6

Further ,from the proof of Claim 3, at level Li+1 precedence is preserved.Therefore as above the
precedence relationships up to level Li+1 is held.

Complexity Analysis of the Algorithm

The complexity analysis is done in a breadth wise manner.
For the worst case ,lets assume the following.
•	 The DAG G = (V,E) with |V| = n and |E| = m, is densely connected. i.e Each level is a fully connected

2bipartite sub graph.Then from graph theory[5] we could assume that |V| � |E| .
•	 Average number of nodes at each level = b (Branching Factor). Therefore number of edges at each

level = b2 .
At each level of the NSP DAG , the algorithm performs the following main functions :
•	 Supernode creation.

The supernode creation is based largely on the disjoint set algorithm utilizing disjoint set forest
implementation.At each level, both parents and current vertices would be considered in creating the
disjoint sets.From [1] the worst case time complexity for m disjoint-set operations on n elements is
O(m.α(n))).In the worst case , at each level , 2b elements would be considered (nodes at the current
level + their parents). Therefore the number of operations m would be

•	 2b MakeSuperNode operations.
•	 (2b-1) UnionSuperNodes operations.
•	 2(2b-1) FindSuperNode operations.

This sums up to m = 8b-3 operations.
Time complexity for disjoint set operations :

O((8b -3).α(2b)))	 (1)

But each node would be checking for disjointness and coloring status of its parents in MakeSuperN

ode method. Therefore this would involve O(b2). Hence the time complexity for supernode creation
for each level is :

O(b2).	 (2)

Extending this to all the levels and n vertices, the loose upper bound time complexity for supernode
creation for the task graph would be:

O(n 2). (3)

•	 NSP to SP conversion.

As per the algorithm, at worst case the following complexities can be observed for each level.

•	 Disjoint sync node exists. Then as per the algorithm, both FindSync and AttachDis

jointSyncNode have upperbounds of O(b2).
•	 Sync node exists. Then both Findsync and AttachSyncNode have upperbounds of O(b2).

Therefore loose upper bound in conversion for each level would be:

O(b2).	 (4)

Then extending to all the levels in the NSP DAG ,as before the overall loose upper bound for NSP to
SP conversion would be:

O(n 2). (5)

Project Paper-17

Considering (1) and (2) the overall Time complexity for the overall algorithm in converting a NSP DAG
with n vertices would be:

O(n 2). (6)

7 Qualitative assessment of the transformation

7.1 Critical path increment

7.1.1 Upper bounds

The algorithm processes the NSP DAG in a breadth first manner. When the traversal depth is at level
Li , all the nodes {V} where Level(V) < Li are already resolved to a SP DAG. As per the definition of
supernode, at each level Li , all disjoint sub graphs of G , that belongs to different supernodes, would be
resolved in parallel. Therefore irrespective of the number of disjoint sub graphs at level Li , a sync node
would be selected for synchronizing the NSP problems at level Li for each sub graph.Therefore if there are
n such supernodes, there would be one sync node promoted for each supernode , which would be in parallel
to each other.Therefore irrespective of n, only one level of additional sync nodes would be added for each
level of a NSP problem.
Further when there are NSP problems across disjoint parents of the nodes at level Li (i.e disjoint sync
nodes), irrespective of other NSP problems in the individual supernodes, the algorithm selects a disjoint
sync node to synchronize all the nodes at level Li (proposition 1), thus incrementing the critical path
length by 1 for the level Li.
Therefore at worst case, for a graph with a depth of L, for every levelLi (0< Li < L) there can be at least
one NSP problem. Therefore at each level, a specific synchronization is required. This results in a critical
path increment of 1 * L .

• Original depth of the NSP graph = L
• Additional path length added in worst case = L

Therefore we claim that the upper bound in the increment of Critical path length is 2�L for any type of NSP
Graph with computational depth of L.

7.1.2 Lower Bound

For completeness, lower bound invariable would result in when an SP DAG is processed by the algorithm.
Since there are no NSP problems at any level Li (0<Li< L) that needs transformation, the graph would
not be transformed.Therefore the lower bound would be L.

7.2 Increase in Critical path vs reduction in parallelism

When a task node is selected as an sync node for a level L to solve an NSP problem our algorithm creates
a new level of synchronization in the task graph. Even though it does not increase the overall work (T1) it
increases the critical path T∞.
As an example if we assume that there are n nodes at level Li , selecting one candidate node as the sync
node v would result in other (n-1) siblings spawning out from v.The resultant would be;
• Increase in critical path by 1 .
• reduction in the parallelism at level Lifrom n to (n-1).

In the case where this selected vertex v ,has a significant larger task load,then the rest of the (n-1) tasks
get delayed until v is finished.Therefore as a variant to our existing algorithm we would like to explore the
following heuristical approach.

Project Paper-18

7.3 Variant of the Algorithm using heuristics

If the loads of every task node in a supernode can be measured, we suggest the following heuristics in selecting

the sync node rather than selecting a first sync node as the synchronization node.

First let’s define cost SOHc -As the overhead incurred in adding a new task node to G’.

Assumption 1 Let’s assume that the synchronization cost of the parent nodes on a sync node would be
similar ,when either an existing task node or a new synchronization node is used. Thus is not used in the
comparative cost analysis below.

The suggestions are as follows;
•	 Select the sync task node vlo with the lowest work load , say V clo where cost(vlo) ≤ ∀ vertex v ∈

current supernode .This would result in a lesser increment to T∞ than selecting an arbitrary node,
from the point of actual execution time of the Critical path inline with the definition in [2].

•	 Include a new synchronization node vs where all parents of all vertices in supernode would sync to,
when V clo � SOHc .The following remarks needs to be considered.
•	 This would result in an lesser increment in the actual execution time since T∞ + V clo ≥ T∞ +

SOHc.
•	 But would result in an increase in the Total work since the addition of SOHc. The new Total

work would be T1 + SOHc.

8 Experiments and analysis

In order to verify the correctness and the quality of conversion, from the aspects of increase in critical path,
precedence preservation and SP properties ,several experiments were carried out. They were categorized
under two aspects.
•	 Modelling of task graphs that represent actual applications
•	 Asses the conversion quality by using random NSP Graphs with different topologies and work loads.

8.1 Actual Task Graph modelling

In this empirical analysis , several graph structures were utilized.Further, to assess the quality we compared
our transformations with a previous transformation algorithm suggested by Gemund et.al [6].

8.1.1 Fully connected Bipartite Graph

We achieved commendable results for this transformations.At each level of the graph with a NSP issue, we
were able to achieve SP transformation by addition of one level. Therefore in a Bipartite graph with n levels
, the maximum increase in the critical path was 2n.

Project Paper-19

1

2 3 4

65 7

8

1

2 3 4

6

5 7

8

1

2 3 4

6

5 7

8

Figure 7: Bipartite graph transformation

The following graph shows the comparative results.

Fully connected Bipartite DAG
450 Analysis of Critical path length
400

350

300

5 10 20 30 40 50 100 200
number of levels with NSP issues

Original

Our

Gemund

C
ri

ti
ca

l p
at

h
le

n
g

th

150

100

250

200

50

0

Figure 8: comparison of Bipartite graph conversion

8.1.2 Paired Synchronization Graphs

This can be modelled in parallelization of loops where a part of the loop body contains loop-carried depen-
dencies.Our comparative results were very attractive.When we experiment out with NSP problem at only one
level with multiple levels of SP subgraphs following it,our algorithm managed to narrow down the increment
of T∞ to 1. But critical path increment of [6] increased linearly proportionate to the number of SP levels
below the NSP level as given in the figure 9.

Project Paper-20

1

2 3 4

65 7

11

98 10

1

8 9 10

32 4

11

6

5 7

Figure 9: Paired Synchronization graph transformation

The following graph shows the comparative results.

Paired synchronization example

600 -Analysis of Critical path length increase

in
cr

ea
se

 in
 C

ri
ti

ca
l p

at
h

500

400

300

200

100

0

5
 10 20 30 40 50 100 200 400 500

number of levels in NSP Our

Gemund

Figure 10: comparison of Paired Synchronization conversion

8.1.3 Macro Pipeline

The Macro Pipeline graphs can be seen in wave-front computation applications.Lets denote the width (and
the breadth) of the task graph as M, then our algorithm managed to restrict the Critical path increase
to 2M-4, where as in the comparison [6] showed more increase in the critical path. Further there was no
increase in the Total Work T1. Following graph shows a comparison with [6][7]

Project Paper-21

M

1

2 3

654

10987

131211

14 15

16

1

2 3

654

10987

131211

14 15

16

1

2 3

6

5

4

109

8

7

13

12

11

14

15

16

1

2 3

6

5

4

109

8

7

13

12

11

14

15

16

M

Figure 11: macro pipeline transformation

Macro pipeline
Analysis of Critical path length

0

100

200

300

400

500

5 10 20 30 40 50 100

M - Order of the Graph

C
ri

ti
c

a
l

P
a

th

original CP

our CP

Gemund CP

1

2 3

654

10987

131211

14 15

16

1

2 3

654

10987

131211

14 15

16

M

Figure 12: macro pipeline transformation

8.1.4 Blumofe’s lower bound example [8]

This represents a NSP DAG with computationally deep and shallow tasks in the same portion of computation.
The model in a multi-threaded computation would be as in Figure 13.The root thread spawns m threads of
subcomputations. Then this could be represented in a NSP DAG as shown in Figure 14.

When we convert the NSP DAG to a SP DAG, we observed that the critical path increase was
(m-1) where m denotes the subcomputations spawned from the root thread.Figure 15 shows the transformed
SP DAG

Project Paper-22

2 3

0 1

4

8 9

10 11

33 34

12 13

14 15

35 36

16 17 18

5 6 7

19 20

21 22

23 24

25 26

27 28

29 30

31 32

1 2

1 n 1 n

...... m

Figure 13: multi-threaded computation model

0

2 1

8 3
5

10 9 12 4 19 6

33 11 14 13 16 21 20 25 7

34 35 15 17 23 22 27 26 31

36 18 24 29 28 32

30

Figure 14: NSP DAG representation of the computation

Project Paper-23

0

2 1

8 3
5

10 12 4 19 6

33

34

14 21 25 7

35 23 27

16

17 11 36 29

18 9 15 31

24 30 3213

22 28

20 26

Figure 15: SP DAG representation of the computation

8.2 Random Graph Analysis

In order to verify the correctness and transformation quality of our algorithm,we utilized random Graphs
generated by Waseda University , Japan [9].Two sets of graphs were utilized each having around 100 graph.
One set comprised of 50 node task graphs while the other included task graphs of 100 nodes each. The
Resultant graphs were verified for;
• Preservation of precedence
• SP property of the transformation.

Following shows the comparative results. The results generated from the random graphs were encouraging
to the fact that , the increase in Critical path was always less than twice the critical path length of the NSP
DAG. The summarized results for 100 node random task graphs were as follows ;

Project Paper-24

Random Task Graph Test

critical path comparison - 100 task nodes

0

10

20

30

40

50

60

70

1 3 5 7 9 11 13 15 17 19 21 23 25

25 Samples

C
ri

ti
c
a
l
P

a
th

CP of SP CP of SP

Figure 16: Results for 100 node random task graphs

Average Critical path length of NSP task graphs 23
Average Critical path length of SP task graphs 34
Maximum Ratio in CP increase 1.77
Minimum Ratio in CP increase 1.17
Increase in Total Work 0

Figure 17: Summarized results for 100 node random task graphs

8.3 Verification of the results

Keeping inline with the theoretical verification of the algorithm we took effort in verifying the quality of the
transformation empirically. The following steps were taken.
•	 Verification of preservation of precedence in the transformation through a precedence checking program.
•	 Verification of SP properties through a SP property checker program.The Series-parallel digraph recog-

nition algorithm proposed by Tarjan et. al [10] was implemented in order to verify the SP properties
in the transformed task graphs.

9 Conclusion

We were able to successfully implement a new algorithm that gives a more qualitative NSP to SP conversion
with a lesser time complexity compared to the previous findings. Further after implementing the algorithm,we
managed to verify the correctness and the quality through converting actual NSP computation models and
random task graphs. Following summaries our achievements.
•	 Upper Bound for increase in T∞ is 2�T∞.
•	 Upper Bound for increase in T1 is 0.
•	 Time Complexity of the Conversion Algorithm is O(n2)

Project Paper-25

9.1 Future Work and Enhancements

Following describes the enhancements that could have been applied in the project and projects the future
scope of any possible extensions.

•	 The current scope address the NSP DAG to SP DAG conversion from a theoretical standpoint.But
the conceptual transformation can be verified by modelling the transformation in an actual parallel
multi-threaded environment like Cilk.This would facilitate in analyzing the actual increase in T∞ and
T1 according to the cost model of the underlying environment.

•	 The current algorithm results in unbounded in-degree when synchronizing levels with disjoint sync
node.This results in a bottleneck for that particular level through the disjoint synchronization node.
Another possible exploration area would be refine the algorithm to avoid such bottleneck.
•	 Even though we were able to perform the transformation with significant effects on the time bounds,

we haven’t performed a thorough analysis of the effects on space bounds after the transformation.This
is essential since its would be fruitless to achieve significant time bounds with relatively inefficient space
bounds.

•	 As there exists parallel algorithms and implementations to verify the ”SP-ness” of a arbitrary DAG, a
possible extension would be to delve into a parallel implementation of the algorithm.This would involve
in analyzing possible vertical/horizontal partitioning of the task graphs to disjoint sets (similar to the
Supernodes) and applying the current algorithm on those disjoint task graph sets.
•	 Further ,we would like to verify the correctness of the algorithm with more models of actual task

graphs as well as random task graphs with more variety and task nodes. Further it would be relevant
to verify the correctness using task graphs with different task loads rather than unit work loads.This
would enable us to compare this with the variant we have discussed and analyst the pros and cons of
each method.

10 Appendix

10.1 Appendix A - NSP problems

This section outlines the following NSP problems ,(Where any NSP problem could be decomposed into [6])
that are addressed in our Algorithm.
•	 A spawn node syncs to sync nodes that are in a transitive relation.The sync nodes are in different

levels in the NSP DAG.This can be called a transitive relation problem.
•	 Spawn node(s) syncing to more than one sync node that are in the same level (e.g. simple bi-partite

graph).

References

[1] V. P. Arturo Escibano, Arjan Gemund, “Performance trade-offs in series-parallel programming models,”
1997.

[2] H. P. Charles E.leiserson, “A minicourse on multithreaded programming,” 1998. Also available as MIT
Laboratory for Computer Science.

[3] R. D. Blumofe,	 Executing Multitreaded Programs Efficiently. PhD thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, 1995. Also available as MIT
Laboratory for Computer Science Technical Report.

[4] R. C. C. E.Leiserson, T.Cormen, Introduction to Algorithms. (Second edition)MIT Press, 2001.

[5] J. A. McHugh, Algorithmic Graph Theory. Prentice Hall Publications, 1990.

Project Paper-26

[6] A. Escibano and A. Gemund, “An algorithm for transforming nsp to sp graphs,” (Delft University of
Technology Netherlands), 1996.

[7] A. G. Arturo Escibano, “An algorithm for transforming nsp to sp graphs,” (Delft University of Tech-
nology Netherlands).

[8] R. D. Blumofe, “Managing storage for multithreaded computations,” Master’s thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 1992. Also avail-
able as MIT Laboratory for Computer Science Technical Report.

[9] “Standard task graph sets -kasahara laboratory,waseda university.”	 Available on the Internet from
http : //www.kasahara.elec.waseda.ac.jp/schedule/introe.html.

[10] J. V. Robert Tarjan, “The recognition of series parallel digraphs,” in Proceedings of the ACM.

27

