
8. You	  Won’t	  Want	  To	  Play	  Sudoku	  Again	  
 
Thanks to modern computers, brawn beats brain. 
 

 
Sudoku is a popular number-placement puzzle. The objective is to fill a partially filled 9 
× 9 grid with digits so that each column, each row, and each of the nine 3 × 3 sub-grids or 
sectors that compose the grid contains all of the digits from 1 to 9. 
 
These constraints are used to determine the missing numbers.  In the puzzle below, 
several sub-grids have missing numbers.  Scanning rows (or columns as the case may be) 
can tell us where to place a missing number in a sector.  
   

  
 
In the example above, we can determine the position of the 8 in the top middle sector.  8 
cannot be placed in the middle or bottom rows of the middle sector. 
 

  
 
Our goal is to write a Sudoku solver that can do a recursive search for numbers to be 
placed in the missing positions.  The basic solver does not follow a human strategy such 
as the one described above. It guesses a number at a particular location and determines if 

Programming constructs and algorithmic paradigms covered in this puzzle: Global 
variables. Sets and set operations. Exhaustive recursive search with implications. 
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the guess violates a constraint or not.  If not, it proceeds to guess other numbers at other 
positions.  If a violation is detected, then the most recent guess is changed.  This is 
similar to the N-queens search. 
 
Our goal is to write a recursive Sudoku solver that solves any Sudoku puzzle regardless 
of how many numbers are filled in. Then, we will add “human intelligence” to the solver. 
 

Recursive Sudoku Solving 
 
Below is the top-level routine for a basic recursive Sudoku solver. The grid is represented 
by a two-dimensional array/list called grid and a value of 0 means that the location is 
empty. Grid locations are filled in through a process of a systematic ordered search for 
empty locations, guessing values for each location, and backtracking, i.e., undoing 
guesses if they are incorrect. 
 
	  1.	   backtracks	  =	  0	  
	  
	  2.	   def	  solveSudoku(grid,	  i	  =	  0,	  j	  =	  0):	  
	  3.	   	  	  	  	  global	  backtracks	  
	  4.	   	  	  	  	  i,	  j	  =	  findNextCellToFill(grid)	  
	  5.	   	  	  	  	  if	  i	  ==	  -‐1:	  
	  6.	   	  	  	  	  	  	  	  	  return	  True	  
	  7.	   	  	  	  	  for	  e	  in	  range(1,	  10):	  
	  8.	   	  	  	  	  	  	  	  	  if	  isValid(grid,	  i,	  j,	  e):	  
	  9.	   	  	  	  	  	  	  	  	  	  	  	  	  grid[i][j]	  =	  e	  
10.	   	  	  	  	  	  	  	  	  	  	  	  	  if	  solveSudoku(grid,	  i,	  j):	  
11.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  return	  True	  
12.	   	  	  	  	  	  	  	  	  	  	  	  	  backtracks	  +=	  1	  
13.	   	  	  	  	  	  	  	  	  	  	  	  	  grid[i][j]	  =	  0	  
14.	   	  	  	  	  return	  False	  
 
solveSudoku takes three arguments, and for convenience of invocation, we have 
provided default parameters of 0 for the last two arguments. This way, for the initial call 
we can simply call solveSudoku(input) on an input grid input. The last two 
arguments will be set to 0 for this call, but will vary for the recursive calls depending on 
the empty squares in input. 
 
Procedure findNextCellToFill, which will be shown and explained later, finds the first 
empty (value 0) by searching the grid in a predetermined order. If the procedure cannot 
find an empty value, the puzzle is solved.  
 
Procedure isValid, which will also be shown and explained later, checks that the current 
grid that is partially filled in does not violate the rules of Sudoku.  This is reminiscent of 
noConflicts in the N queens puzzle that also worked with partial configurations, i.e., 
configurations with fewer than N queens.  
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The first important point to note about solveSudoku is that there is only one copy of 
grid that is being operated on and modified. solveSudoku is therefore an in-place 
recursive search exactly like N-queens.  Because of this, we have to change back the 
value of the position that was filled in with an incorrect number (Line 9) back to 0 (Line 
13) after the recursive call for a particular guess returns False and the loop continues. 
 
One programming construct that you might not have seen before is global. Global 
variables retain state across function invocations and are convenient to use when we want 
to keep track of how many recursive calls are made, etc. We use backtracks as a global 
variable, initially setting to zero (at the top of the file), and incrementing it each time we 
realize we have made an incorrect guess that we need to undo. Note that in order to use 
backtracks in solveSudoku we have to declare it global within the function. 
 
Computing the number of backtracks is a great way of measuring performance 
independent of the computing platform. The more the number of backtracks, typically the 
longer the program takes to run.  
 
Now, let’s take a look at the procedures invoked by solveSudoku. findNextCellToFill 
follows a prescribed order in searching for an empty location, going column by column, 
starting with the leftmost column and moving rightward. Any order can be used as long 
as we ensure that we will not miss any empty values in the current grid at any point in the 
recursive search. 
 
1.	   def	  findNextCellToFill(grid):	  
2.	   	  	  	  	  for	  x	  in	  range(0,	  9):	  
3.	   	  	  	  	  	  	  	  	  for	  y	  in	  range(0,	  9):	  
4.	   	  	  	  	  	  	  	  	  	  	  	  	  if	  grid[x][y]	  ==	  0:	  
5.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  return	  x,	  y	  
6.	   	  	  	  	  return	  -‐1,	  -‐1	  
 
The procedure returns the grid location of the first empty location, which could be 0,	  0 
all the way to 8,	  8. Therefore, we return -‐1,	  -‐1 if there are no empty locations. 
 
The procedure isValid below embodies the rules of Sudoku.  It takes a partially filled in 
Sudoku puzzle grid, and a new entry e at grid[i,	  j], and checks whether filling in this 
entry violates any of the rules or not. 
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	  1.	   def	  isValid(grid,	  i,	  j,	  e):	  
	  2.	   	  	  	  rowOk	  =	  all([e	  !=	  grid[i][x]	  for	  x	  in	  range(9)])	  
	  3.	   	  	  	  if	  rowOk:	  
	  4.	   	  	  	  	  	  	  	  	  columnOk	  =	  all([e	  !=	  grid[x][j]	  for	  x	  in	  range(9)])	  
	  5.	   	  	  	  	  	  	  	  	  if	  columnOk:	  
	  6.	   	  	  	  	  	  	  	  	  	  	  	  	  secTopX,	  secTopY	  =	  3	  *(i//3),	  3	  *(j//3)	  
	  7.	   	  	  	  	  	  	  	  	  	  	  	  	  for	  x	  in	  range(secTopX,	  secTopX+3):	  
	  8.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  for	  y	  in	  range(secTopY,	  secTopY+3):	  
	  9.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  grid[x][y]	  ==	  e:	  
10.	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  return	  False	  
11.	   	  	  	  	  	  	  	  	  	  	  	  	  return	  True	  
12.	   	  	  	  return	  False	  
 
The procedure first checks that each row does not already have an element with 
numbered e on Line 2. It does this by using the all operator. Line 2 is equivalent to 
iterating through grid[i][x] for x from 0 through 8 and returning False if any entry is 
equal to e, and returning True otherwise. If this check passes, the column corresponding 
to j is checked on Line 4. If the column check passes, we determine the sector that 
grid[i,	  j] corresponds to (Line 6).  We then check if any of the existing numbers in 
the sector are equal to e in Lines 7-10. 
 
Note that isValid is like noConflicts in that it only checks whether a new entry 
violates Sudoku rules since it focuses on the row, column and sector of the new entry. If 
say i	  =	  2, j	  =	  2, e	  =	  2, it does not check that the ith row does not already have two 
3’s on it, for instance. It is therefore important to call isValid each time an entry is made 
and solveSudoku does that. 
 
Finally, here is a simple printing procedure so we can output something that (sort of) 
looks like a solved Sudoku puzzle. 
 
1.	   def	  printSudoku(grid):	  
2.	   	  	  	  	  numrow	  =	  0	  
3.	   	  	  	  	  for	  row	  in	  grid:	  
4.	   	  	  	  	  	  	  	  	  if	  numrow	  %	  3	  ==	  0	  and	  numrow	  !=	  0:	  
5.	   	  	  	  	  	  	  	  	  	  	  	  	  print	  ('	  ')	  
6.	   	  	  	  	  	  	  	  	  print	  (row[0:3],	  '	  ',	  row[3:6],	  '	  ',	  row[6:9])	  
7.	   	  	  	  	  	  	  	  	  numrow	  +=	  1	  	  	  
	  
Line 5 prints a space to create a line spacing after three rows are printed. Remember that 
each print statement produces output on a different line if we do not set end	  =	  	  
''. 
 
We are now ready to run the Sudoku solver. Here’s an input puzzle given as a two-
dimensional array/list: 
 

input	  =	  [[5,	  1,	  7,	  6,	  0,	  0,	  0,	  3,	  4],	  
	  	  	  	  	  	  	  	  	  [2,	  8,	  9,	  0,	  0,	  4,	  0,	  0,	  0],	  
	  	  	  	  	  	  	  	  	  [3,	  4,	  6,	  2,	  0,	  5,	  0,	  9,	  0],	  
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	  	  	  	  	  	  	  	  	  [6,	  0,	  2,	  0,	  0,	  0,	  0,	  1,	  0],	  
	  	  	  	  [0,	  3,	  8,	  0,	  0,	  6,	  0,	  4,	  7],	  
	  	  	  	  [0,	  0,	  0,	  0,	  0,	  0,	  0,	  0,	  0],	  
	  	  	  	  [0,	  9,	  0,	  0,	  0,	  0,	  0,	  7,	  8],	  
	  	  	  	  [7,	  0,	  3,	  4,	  0,	  0,	  5,	  6,	  0],	  
	  	  	  	  [0,	  0,	  0,	  0,	  0,	  0,	  0,	  0,	  0]]	  

	  	  	  	  
	  	  	  	  
	  	  	  	  
	  	  	  	  
	  	  	  	  

	  
	  
	  
	  
	  

 
We run: 
 

solveSudoku(input)	  
printSudoku(input)	  

 
This produces: 
 

[5,	  1,	  7]	  	  	  [6,	  9,	  8]	  	  	  [2,	  3,	  4]	  
[2,	  8,	  9]	  	  	  [1,	  3,	  4]	  	  	  [7,	  5,	  6]	  
[3,	  4,	  6]	  	  	  [2,	  7,	  5]	  	  	  [8,	  9,	  1]	  
	  
[6,	  7,	  2]	  	  	  [8,	  4,	  9]	  	  	  [3,	  1,	  5]	  
[1,	  3,	  8]	  	  	  [5,	  2,	  6]	  	  	  [9,	  4,	  7]	  
[9,	  5,	  4]	  	  	  [7,	  1,	  3]	  	  	  [6,	  8,	  2]	  
	  
[4,	  9,	  5]	  	  	  [3,	  6,	  2]	  	  	  [1,	  7,	  8]	  
[7,	  2,	  3]	  	  	  [4,	  8,	  1]	  	  	  [5,	  6,	  9]	  
[8,	  6,	  1]	  	  	  [9,	  5,	  7]	  	  	  [4,	  2,	  3]	  

 
Check to make sure the puzzle was solved correctly. On the puzzle input, solveSudoku 
takes 579 backtracks.  If we run solveSudoku on a different puzzle shown below, it takes 
6363 backtracks.  The second puzzle is the first puzzle with a few numbers removed as 
shown with 0 rather than 0. This makes the puzzle harder. 
 

Inp2	  	  =	  [[5,	  1,	  7,	  6,	  0,	  0,	  0,	  3,	  4],	  
	  	  [0,	  8,	  9,	  0,	  0,	  4,	  0,	  0,	  0],	  
	  	  [3,	  0,	  6,	  2,	  0,	  5,	  0,	  9,	  0],	  
	  	  [6,	  0,	  0,	  0,	  0,	  0,	  0,	  1,	  0],	  
	  	  [0,	  3,	  0,	  0,	  0,	  6,	  0,	  4,	  7],	  
	  	  [0,	  0,	  0,	  0,	  0,	  0,	  0,	  0,	  0],	  
	  	  [0,	  9,	  0,	  0,	  0,	  0,	  0,	  7,	  8],	  
	  	  [7,	  0,	  3,	  4,	  0,	  0,	  5,	  6,	  0],	  
	  	  [0,	  0,	  0,	  0,	  0,	  0,	  0,	  0,	  0]]	  

	  	  	  	  	  	  	  
	  	  	  	  	  	  	  
	  	  	  	  	  	  	  
	  	  	  	  	  	  	  
	  	  	  	  	  	  	  
	  	  	  	  	  	  	  
	  	  	  	  	  	  	  
	  	  	  	  	  	  	  

 
The basic solver does not perform the implications that we described in determining the 
position for the 8 in our very first Sudoku example. The same technique can be expanded 
by using information from perpendicular rows and columns. Let’s see where we can 
place a 1 in the top right box in the example below. Row 1 and row 2 contain 1’s, which 
leaves two empty squares at the bottom of our focus box. However, square g4 also 
contains 1, so no additional 1 is allowed in column g. 
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This means that square i3 is the only place left for 1. 
 

  
  
How can the recursive Sudoku solver be augmented to perform these implications? 
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Implications During Recursive Search 
 
We will show how to augment our solver to perform this implication and see how much 
more efficient the solver becomes. We can do this by measuring the number of 
backtracks with and without implications. Implications more quickly determine whether a 
particular assignment of values to empty squares is correct or not. 
 
There are several changes that need to be made to the solver in order to correctly 
implement this optimization.  To be clear, this optimization is thought of as an 
implication because the current state of the grid implies a position for the 1 in the 
example above. There can be one or more implications that can be made once a particular 
grid location is assigned a value.  The recursive search code in the optimized solver needs 
to be slightly different. 
 
	  1.	   backtracks	  =	  0	  
	  
	  2.	   def	  solveSudokuOpt(grid,	  i	  =	  0,	  j	  =	  0):	  
	  3.	   	  	  	  	  global	  backtracks	  	  	  
	  4.	   	  	  	  	  i,	  j	  =	  findNextCellToFill(grid)	  
	  5.	   	  	  	  	  if	  i	  ==	  -‐1:	  
	  6.	   	  	  	  	  	  	  	  	  return	  True	  
	  7.	   	  	  	  	  for	  e	  in	  range(1,	  10):	  
	  8.	   	  	  	  	  	  	  	  	  if	  isValid(grid,	  i,	  j,	  e):	  
	  9.	   	  	  	  	  	  	  	  	  	  	  	  	  impl	  =	  makeImplications(grid,	  i,	  j,	  e)
10.	   	  	  	  	  	  	  	  	  	  	  	  	  if	  solveSudoku(grid,	  i,	  j):	  
11.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  return	  True	  
12.	   	  	  	  	  	  	  	  	  	  	  	  	  backtracks	  +=	  1	  
13.	   	  	  	  	  	  	  	  	  	  	  	  	  undoImplications(grid,	  impl)	  
14.	   	  	  	  	  return	  False	  

	  

 
The only changes are on Lines 9 and 13. On Line 9, not only are we filling in the 
grid[i][j] entry with e but we are also making implications and filling in other grid 
locations. All of these have to be “remembered” in the implication list impl.  On Line 13, 
we have to undo all of the changes made to the grid because the grid[i][j]	  =	  e guess 
was incorrect. 
 
Storing the assignment and implications performed so we can roll them all back if the 
assignment does not work is important for correctness – else we might not explore the 
entire search space and therefore not find a solution.  To understand this, look at the 
figure below. 
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Think of A, B and C above as being grid locations and assume that we only have two 
numbers 1 and 2 that are possible entries. (We have a simplified situation for illustration 
purposes.) Suppose we assign A = 1, B = 1, and then C = 2 is implied.  After exploring 
the A = 1, B = 1 branch fully, we backtrack to A = 1, B = 2.  Here, we need to explore C 
= 1 and C = 2 as in the picture to the left, not just C = 2 as shown on the picture to the 
right.  What might happen is that C is still set to 2 in the B = 2 branch and we, in effect, 
only explore the B = 2, C = 2 branch. So we need to roll back all the implications 
associated with an assignment. 
 
The procedure undoImplications is short and is shown below. 
 
1.	   def	  undoImplications(grid,	  impl):	  
2.	   	  	  	  	  for	  i	  in	  range(len(impl)):	  
3.	   	  	  	  	  	  	  	  	  grid[impl[i][0]][impl[i][1]]	  =	  0	  
 
impl is a list of 3-tuples, where each 3-tuple is of the form (i,	  j,	  e) meaning that 
grid[i][j]	  =	  e. In undoImplications we don’t care about the third item e since we 
want to empty out the entry. 
 
makeImplications is more involved since it performs significant analysis. The 
pseudocode for makeImplications is below. The line numbers are for the Python code 
that is shown after the pseudocode. 
 
For each sector (sub-grid): 
    Find missing elements in the sector (Lines 8-12) 
    Attach set of missing elements to each empty square in sector (Lines 13-16) 
    For each empty square S in sector: (Lines 17-18) 
        Subtract all elements on S’s row from missing elements set (Lines 19-22) 
        Subtract all elements on S’s column from missing elements set (Lines 23-26) 
        If missing elements set is a single value then: (Line 27) 
            Missing square value can be implied to be that value (Lines 28-31) 
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	  1.	   sectors	  =	  [[0,	  3,	  0,	  3],	  [3,	  6,	  0,	  3],	  [6,	  9,	  0,	  3],	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [0,	  3,	  3,	  6],	  [3,	  6,	  3,	  6],	  [6,	  9,	  3,	  6],	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [0,	  3,	  6,	  9],	  [3,	  6,	  6,	  9],	  [6,	  9,	  6,	  9]]	  
	  
	  2.	   def	  makeImplications(grid,	  i,	  j,	  e):	  
	  3.	   	  	  	  	  global	  sectors	  
	  4.	   	  	  	  	  grid[i][j]	  =	  e	  
	  5.	   	  	  	  	  impl	  =	  [(i,	  j,	  e)	  
	  6.	   	  	  	  	  for	  k	  in	  range(len(sectors)):	  
	  7.	   	  	  	  	  	  	  	  	  sectinfo	  =	  []	  
	  8.	   	  	  	  	  	  	  	  	  vset	  =	  {1,	  2,	  3,	  4,	  5,	  6,	  7,	  8,	  9}	  
	  9.	   	  	  	  	  	  	  	  	  for	  x	  in	  range(sectors[k][0],	  sectors[k][1]):	  
10.	   	  	  	  	  	  	  	  	  	  	  	  	  for	  y	  in	  range(sectors[k][2],	  sectors[k][3]):	  
11.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  grid[x][y]	  !=	  0:	  
12.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  vset.remove(grid[x][y])	  
13.	   	  	  	  	  	  	  	  	  for	  x	  in	  range(sectors[k][0],	  sectors[k][1]):	  
14.	   	  	  	  	  	  	  	  	  	  	  	  	  for	  y	  in	  range(sectors[k][2],	  sectors[k][3]):	  
15.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  grid[x][y]	  ==	  0:	  
16.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  sectinfo.append([x,	  y,	  vset.copy()])	  	  	  	  	  	  	  
17.	   	  	  	  	  	  	  	  	  for	  m	  in	  range(len(sectinfo)):	  
18.	   	  	  	  	  	  	  	  	  	  	  	  	  sin	  =	  sectinfo[m]	  	  	  	  	  	  	  	  	  	  	  	  	  
19.	   	  	  	  	  	  	  	  	  	  	  	  	  rowv	  =	  set()	  
20.	   	  	  	  	  	  	  	  	  	  	  	  	  for	  y	  in	  range(9):	  
21.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  rowv.add(grid[sin[0]][y])	  
22.	   	  	  	  	  	  	  	  	  	  	  	  	  left	  =	  sin[2].difference(rowv)	  	  	  	  	  	  	  	  	  	  	  
23.	   	  	  	  	  	  	  	  	  	  	  	  	  colv	  =	  set()	  
24.	   	  	  	  	  	  	  	  	  	  	  	  	  for	  x	  in	  range(9):	  
25.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  colv.add(grid[x][sin[1]])	  
26.	   	  	  	  	  	  	  	  	  	  	  	  	  left	  =	  left.difference(colv)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
27.	   	  	  	  	  	  	  	  	  	  	  	  	  if	  len(left)	  ==	  1:	  
28.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  val	  =	  left.pop()	  
29.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  isValid(grid,	  sin[0],	  sin[1],	  val):	  
30.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  grid[sin[0]][sin[1]]	  =	  val	  
31.	   	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  impl.append((sin[0],	  sin[1],	  val))	  	  	  	  	  	  	  	  	  	  	  
32.	   	  	  	  	  return	  impl	  
 

	  	  	  	  

Line 1 declares variables that give the grid indices of each of the 9 sectors.  For example, 
the middle sector 4 varies from 3 to 5 inclusive in the x and y coordinates. This is helpful 
in ranging over the grid but staying within a sector.  
 
This code uses the set data structure in Python.  An empty set is declared using set() as 
opposed to an empty list which is declared as []. A set cannot have repeated elements. 
Note that even if we included a number, say 1, twice in the declaration of a set, it would 
only be included once in the set. V	  =	  {1,	  1,	  2} is the same as V	  =	  {1,	  2}. 
 
Line 8 declares a set vset that contains numbers 1 through 9.  In Lines 9-12, we go 
through the elements in the sector and remove these elements from vset using the 
remove function. We wish to append this missing element set to each empty square and 
hence we create a list sectinfo of 3-tuples. Each 3-tuple has the x, y coordinates of the 
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empty square in the sector, and a copy of the set of missing elements in the sector. We 
need to make copies of sets because these copies will diverge in their membership later in 
the algorithm. 
 
For each empty square in the sector, we look at the corresponding 3-tuple in sectinfo 
(Line 18). The elements that are in the corresponding row are removed from the missing 
element set given by sin[2], the third element of the 3-tuple by using the set difference 
function (Line 22).  Similarly, for the column associated with the empty square. The 
remaining elements are stored in the set left. 
 
If the set left has cardinality 1 (Line 27), we may have an implication. Why are we not 
guaranteed an implication? The way we have written the code, we compute the missing 
elements for each sector, and try to find implications for each empty square in the sector. 
The very first implication will hold, but once we make one particular implication, the 
sector changes as does the missing elements set.  So further implications computed using 
stale missing elements information may not be valid.  This is why we check if the 
implication violates the rules of Sudoku on Line 29 prior to including it in the implication 
list impl.  
 
This optimization shrinks the number of backtracks down from 579 to 10 for the puzzle 
input and from 6,363 to 33 for puzzle inp2. Of course, from a standpoint of computer 
time usage, both versions run in fractions of a second! This is one of the reasons why we 
included the functionality of counting backtracks in the code so you could see that the 
optimizations do help reduce the guessing required. 
 

Difficulty of Sudoku Puzzles 
 
A Finnish mathematician Arto Inkala claimed in 2006 claimed he had created the world’s 
hardest Sudoku puzzle and followed it up in 2010 with a claim of an even harder puzzle. 
The first puzzle takes the unoptimized solver 335,578 backtracks and the second 9949 
backtracks! The solver finds solutions in a matter of seconds. To be fair, Inkala was 
predicting human difficulty. Here’s Inkala’s 2010 puzzle below. 
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Peter Norvig has written Sudoku solvers that use constraint programming techniques 
significantly more sophisticated than the simple implications we have presented here. As 
a result the amount of backtracking required even for difficult puzzles is quite small. 
 
We suggest you find Sudoku puzzles with different levels of difficulty, from easy to very 
hard and explore how the number of backtracks required in the basic solver and the 
optimized solver change as the level of difficulty increases.  You might be surprised by 
what you find! 
 

Exercises 
 
Exercise 1: We’ll improve our optimized (classic) Sudoku solver in this exercise. Each 
time we discover an implication, the grid changes, and we may find other implications. In 
fact, this is the way humans solve Sudoku puzzles. Our optimized solver goes through all 
the sectors trying to find implications, and then stops. If we find an implication in one 
“pass” through the grid sectors, we could try repeating the entire process (Lines 6-31) 
until we can’t find implications, i.e., can’t add to our data structure impl. Code this 
improved Sudoku solver. What you have to do is enclose the process in a while loop and 
exit when there are no changes. Be careful with indentation and properly initializing 
variables! 
 
You should get Backtracks = 2 in your improved solver for Sudoku puzzle inp2, 
down from 33. 
 
Puzzle Exercise 2: Modify the basic Sudoku solver to work with Diagonal Sudoku, 
where there is an additional constraint that all the numbers 1 through 9 must appear on 
the both diagonals. 
 
Below is a Diagonal Sudoku puzzle: 
 

  
 
And here is its solution: 
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Puzzle Exercise 3: Modify the basic Sudoku solver to work with Even Sudoku, which is 
similar to classic Sudoku, except that particular squares have to have even numbers. An 
example is given below. 
 

  
 
Tbe grayed out blank squares have to contain even numbers; the other squares can 
contain either odd or even numbers. To represent the puzzle using a 2-dimensional list, 
we will use 0’s as before to indicate blank squares without additional constraints, and -2’s 
to indicate that the square is blank and has to contain an even number. Therefore, the 
input list for the above puzzle is: 
 
 

even	  =	  [[8,	  4,	  0,	  0,	  5,	  0,-‐2,	  0,	  0],	  
	  	  	  	  	  	  	  	  [3,	  0,	  0,	  6,	  0,	  8,	  0,	  4,	  0],	  
	  	  	  	  	  	  	  	  [0,	  0,-‐2,	  4,	  0,	  9,	  0,	  0,-‐2],	  
	  	  	  	  	  	  	  	  [0,	  2,	  3,	  0,-‐2,	  0,	  9,	  8,	  0],	  
	  	  	  	  	  	  	  	  [1,	  0,	  0,-‐2,	  0,-‐2,	  0,	  0,	  4],	  
	  	  	  	  	  	  	  	  [0,	  9,	  8,	  0,-‐2,	  0,	  1,	  6,	  0],	  
	  	  	  	  	  	  	  	  [-‐2,0,	  0,	  5,	  0,	  3,-‐2,	  0,	  0],	  
	  	  	  	  	  	  	  	  [0,	  3,	  0,	  1,	  0,	  6,	  0,	  0,	  7],	  
	  	  	  	  	  	  	  	  [0,	  0,-‐2,	  0,	  2,	  0,	  0,	  1,	  3]]	  

 
The solution to the above puzzle is: 
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