
6.s096 
Lecture 5 

 
Tuesday, January 22, 13 

1



Today 

•C++ (!) 
• Compiling 

• Memory management 

•Classes 

•Templates 

Tuesday, January 22, 13 

2



C++
 

Tuesday, January 22, 13 

3



C++ 

• Bjarne Stroustrup 

• 1983 

• Object-oriented (but later than Simula, Smalltalk) 

• Like C, but introduces real objects and classes 

• (plus loads of other features (kitchen sink?)) 

Tuesday, January 22, 13 

4



g++ (C++ compiler) 

• Very similar to gcc. #include <stdio.h> 

g++ -‐o test test.cpp int main(){
 
./test printf("hi from C++\n");
 
=> hi from C++ }
 

Tuesday, January 22, 13 

5



Wait... was that really C++? 

• Yes. 

• C++ is pretty close to being a superset of C. 

• We know C, thus we’ll build from that knowledge to learn C++. 

Tuesday, January 22, 13 

6



new memory management syntax
 

• The new operator allocates space on the heap. 

• new and delete take the place of malloc and free. 

int * numArray = new int[100];
 
delete numArray;
 

struct foo * bar = new struct foo; // delete later
 

Tuesday, January 22, 13 

7



Classes
 

Tuesday, January 22, 13 

8



Why classes? 

• Modularity 

• Objects (data + behavior) 

• Lets programmers (you) define behavior for your own data 

Tuesday, January 22, 13 

9



Basic Class Example 
Rectangle::Rectangle(int w, int h){


// constructor definition
 
width = new int;
 

#include <stdio.h>	 height = new int;
 
*width = w;
 

class Rectangle { *height = h;
 
int * width; }
 
int * height;
 

int main(){
 
public: Rectangle box(5, 7);
 

Rectangle(int, int); // constructor box.printMe();
 
~Rectangle(); // destructor }
 
void printMe(){ // 'method' / member function
 

printf("Dimensions: %d by %d.\n", *width, *height);
 
}
 

};
 

Tuesday, January 22, 13 

10



Constructors and Destructors 

• This destructor should have fit on 
the last slide...: Rectangle::~Rectangle(){ 

• delete width; 
Since we explicitly allocated delete height; 
something with new, we must also } 
explicitly de-allocate it. 

• Rectangle itself is automatically 
deallocated when it goes out of 
scope. 

 
Tuesday, January 22, 13 

11



Default constructors 

Rectangle::Rectangle(){ // no arguments needed! 
width = new int; Rectangle box; 
height = new int; 
*width = 5; 
*height = 5; 

} 

 
Tuesday, January 22, 13 

12



Templates 

• Syntax for making code more flexible. 

• Similar in spirit to Java’s generics. 

• Applied at compile-time, like C macros (the preprocessor). 

• Can be applied to classes, functions. 

• Trivia: language of templates is Turing complete. 

 
Tuesday, January 22, 13 

13



Function Template Example 
template <class typeParam> 
typeParam max(typeParam a, typeParam b){ 

return (a > b ? a : b); 
} 

int main(){ 
int a = 3, b = 7; 
double c = 5.5, d = 1.5; 
printf("%d\n", max(a, b)); // 7 
printf("%f\n", max(c, d)); // 5.5 

} 

 
Tuesday, January 22, 13 

14



Class Template Example 

template <class T> template <class T>
 
class mypair { T mypair<T>::getmax(){
 

T a, b; return a > b ? a : b;
 
public: }
 

mypair(T first, T second){
 
a = first; int main(){
 
b = second; mypair<int> myints(100, 75);
 

} printf("%d\n",

T getmax(); myints.getmax()); // 100
 

};
 


 
Tuesday, January 22, 13 

15



MIT OpenCourseWare
http://ocw.mit.edu

6.S096 Introduction to C and C++
IAP 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



