
16.888/ESD 77 Multidisciplinary System Design 
Optimization: Assignment 2 Part a) Solution 

a1) Design of Experiments 
a1-a) 

Experiment # Mean (ft) Variance (ft^2) 
1 13.9 10.9 
2 12.6 6.5 
3 12.9 5.4 
4 12.9 7.8 
5 12.4 5.3 
6 17.7 26.8 
7 12.1 6.1 
8 13.3 18.7 
9 15.1 24.5 

Overall mean range, R = 13.6 ft. The variance is calculated using the unbiased 
∑ (J J )2− 

estimate (i.e., variance = sn 
2 
−1 = n where ‘n’ is the number of 

n −1 
experiments). 


a1-b) 

The design variable settings and their main effects table is shown below: 


Setting Effects 
A1 -0.5 
A2 0.7 
A3 -0.1 
B1 -0.7 
B2 -0.9 
B3 1.6 
C1 1.3 
C2 -0.1 
C3 -1.2 
D1 0.2 
D2 0.5 
D3 -0.6 

a1-c) 
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From the above table, the optimal airplane has settings (A2, B3, C1, D2) and 

corresponds to experiment #6. It has the highest mean range of 17.7 ft but also 

has a high variance of 26.8 ft^2. 


a1-d) 

The overall average range (average across all experiments) is Jmean = 13.6 ft. 

Now adding the effects of the variable settings for the optimal airplane, the 

predicted range is J = Jmean + (0.7 + 1.6 + 1.3 +0.5) ft = 17.7 ft. This corresponds 

to the mean of experiment #6. 


a1-e) 


Flight: 1 2  3  4  5  Mean  Variance  
Distance (ft): 16.5 19.75 22.5 18.6 17.9 19.05 5.105 

The mean of the test flights is 19.05 ft with a variance of 5.1ft and the prediction 

was 17.7 feet. With a variance that large the mean of the test flight and the 

prediction can be considered the same or at least similar. There was

considerable experimental variation during the tests as some airplanes flew 

straight, others flew curved paths. Therefore, with the large amount of 

experimental variation the prediction seems supported by experiment 


a1-f) 

The optimal airplane setting becomes the baseline design for conducting further 

parameter study. In a parameter study, only one factor is changed at a time, 

keeping all other variables at the baseline setting. 

The number of experimental points = 1+n*(l-1) =1+4*2=9. 


Experiment # A B C D 
1 (baseline) A2 B3 C1 D2 

2 A1 B3 C1 D2 
3 A3 B3 C1 D2 
4 A2 B1 C1 D2 
5 A2 B2 C1 D2 
6 A2 B3 C2 D2 
7 A2 B3 C3 D2 
8 A2 B3 C1 D1 
9 A2 B3 C1 D3 

Except the base design, none of the previous designs is included in this table. 
Therefore each of the 8 new experiments would potentially lead to enhanced 
understanding of the design space, including possible interactions. This might 
lead to improved estimate on mean and reduce the variability. 

a1-g) 
A larger variance indicates a wider spread of results about a mean value and 
reduces the confidence one has in the mean value as a predictor. This 
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essentially means that the mean is not a good enough predicted of the expected 
performance. 

Standard deviation, which is the square root of the variance, can be used to 
define confidence bounds on the expected range and would serve as an indicator 
while selecting an optimal design setting for further exploration. 

a2) Gradient Based Optimization 
(a): 

The objective function is: 

f x x  4 2 x2 1 2( ,  )  = x − x x  + + x (1)1 2 1 1 2 2 12 
The corresponding gradient vector and hessian matrix in symbolic for are; 

⎡ ∂f ⎤ 
⎢ ∂x ⎥ ⎡4x3 − 2x x + x ⎤

( ,  )  = 1 ⎥ 1 1 2 1 (2)∇f x x  ⎢ =1 2 ⎢ 2 ⎥⎢ ∂f ⎥ ⎣ − +x1 2x2 ⎦
⎢∂ ⎥
⎣ x2 ⎦

⎡ ∂2 f ∂2 f ⎤ 
∂x ∂ ∂  + x ⎤⎢ 2 x x  ⎥ ⎡12x2 − 2x 1 −2

H x x  ( ,  )  = ⎢ 1 1 2 ⎥ = 1 2 1 (3)1 2 ⎢ ∂2 f ∂2 f ⎥ ⎢
⎣ −2x1 2 ⎥⎦⎢ ⎥ 

⎣ x x2 1 ∂x2∂ ∂  2 ⎦

(i) Steepest Descent Method 

0Starting point is, X = [2 2]T . The next point in the function minimizing 
ksequence{X } , generated by the steepest descent method is given as: 

X 1 = X 0 − ∇α f X  ( 0 ) (4) 
where α = step length and S 0 ∇ ( 0 )  is the search direction.  Using X 0 in eq.= − f X
(2) and then substituting in eq. (4), we get the next point in terms of step length 
as X 1 = [(2 − 26 α ) 2]T . We have to substitute X 1 in eq. (1): 

f X( 1) = (2 − 26α )4 − 2(2 − 26α )2 + +  4 1 (2 − 26α )2 (5)α 2 
This has now reduced to a single variable optimization problem inα . Equating 
the first derivative to zero, the stationary points are: 

α1 = 
1 (1+ 

3); α2 = 
1 ; α3 = 

1 (1− 
3)

13 4 13 13 4 
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The second derivative is positive for α = 
1 (1+ 3 )  and there the function in eq. 

13 4 

(5) has a minimum atα = 
1 (1+ 3) = 0.11 . 

13 4 
Using this α we get X 1 = −0.866 2]T[ . 

** Check: f (X 0 ) =14; f X  1) = 3.4375 < ( 0( f X  ) . Hence the objective function value 
has reduced by almost three times as we moved from point X 0 to X 1 . 

(ii) Newton’s Method 

In the pure Newton method, the next iterate is given by; 

X 1 = 0 −1 0 ∇ ( 0X −H (X ) f X  ) (6) 

The gradient vector and hessian matrix are as follows: 

( 0 ) = ⎡⎢
26⎤
⎥∇f X  

⎣ 0 ⎦ 
⎡45 −4⎤H X( 0 ) = ⎢ ⎥
⎣−4 2 ⎦ 

Let Z = X 1 − X 0  and we can rewrite eq. (6) as a system of linear equations: 

H X  Z( 0 ) = − f X 0 ) (7)∇ ( 

⎡48 / 37 ⎤ ⎡1.2973 ⎤Solving eq. (7) , we get the new iterate: X 1 = = .⎢ ⎥ ⎢  ⎥
⎣22 / 37 ⎦ ⎣0.5946 ⎦

** Check: f (X 1) = 3.0274 < f X  0 )( . Son the objective function value has reduced 
as we moved from initial guess to the first iterate. 

a2-b): 
2 2Min. f (x x ) = +  1, 2 x1 x2 

s.t 2 ≤ x1  => (2 x1)− ≤  0 �	
 
g x  x  )( ,1 2 

( ,  g x x  x x  − ) , assuming active(i) Lagrangian: L x x  ( ,  ,λ) = f x x  ) + λ ( , ) = 2 + 2 +λ(2  x1 2 1 2 1 2 1 2 1 

constraint. Now notice that size of the system to be solved has increased to 
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three, including the lagrange multiplier λ . The KKT condition for the Lagrangian 
is: 

∂L⎡ ⎤  
⎢ ⎥∂x1⎢  ⎥ ⎡2x −λ⎤ ⎡0⎤ 
∂L 

1 

∇ = ⎢  ⎥ = ⎢ 2x ⎥ ⎢0⎥ (1)L ⎢  ⎥ ⎢ 2 ⎥ = ⎢ ⎥∂x2⎢  ⎥ ⎣⎢ 2− x1 ⎦⎥ ⎣⎢0⎦⎥ ⎢ ⎥
⎢ ⎥
∂L 

∂λ⎣ ⎦

The solution to (1) is: 
x1 2⎡ ⎤ ⎡ ⎤ 
x2 = 0 = >⎢ ⎥ ⎢ ⎥ , λ 4 0⎢ ⎥ ⎢ ⎥ 
λ 4⎢ ⎥ ⎢⎣ ⎥⎦⎣ ⎦  

and the constraint is active. So it satisfies the complimentary slackness criteria.  

The function value at the KKT point is f * = 4 . 

In order to check if KKT point leads to a minimum, we need to look at the hessian 

matrix of the Lagrangian, given that the solution is feasible.  

The Hessian of the Lagrangian in this case is: 


⎡ ∂2L ∂2L ⎤ 

∇ xx L = 
⎢
⎢
⎢ ∂
∂x 

2
1 

L 

2 ∂x 
∂ 

1
2 
∂ 
L
x2 
⎥
⎥
⎥ 
= 
⎡

⎣
⎢
2
0 

0
2 
⎤

⎦
⎥ ; 0 positive definite 

⎢ 2 ⎥⎣∂x2∂x1 ∂x2 ⎦ 
since both eigenvalues (2,2) positive (2,2). Hence the function is minimized at the 
KKT point. 

(ii) Use of logarithmic barrier function 

The penalized objective function is: 
( ,  )  − r [l (x − 2)]Φ = f x x  nL 1 2 p 1 (1) 

where rp is the penalty or barrier parameter. Notice that the term associated to 
the constraint is undefined for all infeasible points (e.g., where g(x)>0). 
This represents an ‘interior point’ method where iteration starts inside the feasible 
region and tries to reach the constraint boundary from inside the feasible region.  
Apply KKT condition to ΦL in eq. (1): 
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2 
pr 

+ 

⎡∂ΦL ⎤ 
⎢ ∂x1 

⎥ 0⎡ ⎤⎢ ⎥ = ⎢ ⎥∂ΦL 0⎢ ⎥ ⎣ ⎦
⎢
⎣ ∂x2 ⎦

⎥

⎡
⎢2x1 − 

rp 
⎥
⎤ 

⎡0⎤ 
=> ⎢ x1 − 2⎥ = 

⎣
⎢0⎦
⎥ 

⎢ ⎥⎣ 2x2 ⎦ 

Now ΦL  is defined only for the feasible region, x1 ≥ 2 . Hence the stationary point 
is given as: 

⎡ ⎤ 
*( )  ⎢1 1  ⎥

⎥ (2)X rp = ⎢ 
+ 

⎢ 0 ⎥⎣ ⎦
The optimal point is X * = li *( ) [ ]T . The penalized objective functionm X r  = 2 0

r →0 p 
p 

reaches the boundary from below, ΦL → f X( ) as rp → 0. 

(iii) Newton step on Lagrangian: 

Assuming active constraint, the Lagrangian is: 

2 2( ,  , )  = ( ,  )  + λg x x  = + + (2− x ) (1)L x x  λ f x x  ( ,  )  x x  λ1 2 1 2 1 2 1 2 1 

The corresponding gradient and hessian are 

⎡ ∂L ⎤ 
⎢ ∂x1 

⎥ 
⎢ ⎥ ⎡2x1 −λ⎤ 
⎢ ∂L ⎥ ⎢ ⎥L ⎢
⎢∂x2 

⎥
⎥ 
= ⎢
⎢ 

2 2 ⎥
⎥ 

∇ =  x 

⎣ 2− x1 ⎦⎢ ∂L ⎥

⎢∂ ⎥
⎣ λ ⎦ 

⎡ ∂2L ∂2L ∂2L ⎤ 
⎢ ∂x2 x x  x λ ⎥∂ ∂  ∂ ∂  ⎢ 1 1 2 1 ⎥ ⎡ 2 0  −1⎤ 

HL =
⎢
⎢
∂2L ∂2L 

2 

∂2L ⎥
⎥ = ⎢⎢ 0 2 0  ⎥ 

x x  x  ∂ ∂  λ ⎥∂ ∂  ∂  x⎢ 2 1 2 2 ⎥ ⎢−1 0  0  ⎥⎢ ∂2L ∂2L ∂2L ⎥ ⎣ ⎦ 
⎢ ⎥ 
⎢⎣ λ 1 ∂ ∂x2 ∂ 2∂ ∂x λ λ ⎦⎥ 
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Let us assume an initial point: X 0 = [3 1 0]T . Hence ∇L0 = [6 2 −1]T . 

Apply Newton’s method as before yields: 

⎡2⎤ 
X 1 = ⎢⎢0

⎥
⎥ 

⎢⎣4⎥⎦ 
Comparing with part (i), one can observe that Newton’s method has converged in 
one step. This is because the objective function here is quadratic with a 
constraint is linear. 

a2-c): 
Min. ( 1, 2 ) = 4x1

2 +12 2
2f x x  x  

s.t h x  x  ( 1, 2 ) = x2
2 − (x1 −1) 3 = 0 

(i) The Lagrangian is: 
( ,1 2 ,λ) = f x x  1 2 ) + λ ( 1, 2 ) = 4x1

2 +12  x2
2 +  [  x2

2 − ( 1 −1)  ]  3 (1)L x  x  ( ,  g x  x  λ x 

The KKT condition yields the following system of equations: 
⎡ ∂L ⎤ 
⎢ ∂ ⎥ 
⎢ x1 ⎥ ⎡8x1 −3 (  λ x1 −1)  2 ⎤ ⎡0⎤ 

∇ = ⎢
⎢ ∂L 

⎥
⎥ = ⎢

⎢ 24x2 + 2λx2 ⎥
⎥ = ⎢

⎢0⎥
⎥ (2)L 

⎢∂x2 ⎥ ⎢⎣ x2
2 − (x1 −1)  3 ⎥⎦ ⎢⎣0⎥⎦⎢ ∂L ⎥ 

⎢∂ ⎥⎣ λ ⎦
The system of equation (2) does not have a consistent real solution.  

This situation is associated to linear independence constraint qualification 
(LICQ). In the KKT condition, there is an inherent assumption that the constraint 
jacobian (in case of multiple constraints) be of full-rank or the constraint vector (in 
case of a single constraint) is non-zero at the KKT point. [Recall the KKT 
condition, ∇ ( )  +∇h X  λN = 0N = λ − ∇ ( ) ]  ∇f X  )  and inverse of the f X ( )T > = [ h X  T −1 (�	
 �	


mx1 nx1 nx1 nxm 

constraint jacobian should exist]. 
Here, the actual optima lies at (1,0) but ∇ = −  h ⎣⎡ 3(x1 −1) 2 2x2 ⎦⎤

T
reduces to a zero 

vector at (1,0) and the assumption of KKT condition is violated in this case. 
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⎡∂f (1,0)⎤ ⎡∂h(1,0)⎤ 
⎢ ∂x ⎥ ⎡8⎤ ⎢ ∂x ⎥ ⎡0⎤
⎢ 1 ⎥ = , ⎢ 1 ⎥ = 
⎢∂f ( )1,0 ⎥ 

⎢
⎣0
⎥
⎦ ⎢∂h( )1,0 ⎥ 

⎢
⎣0
⎥
⎦ 

⎢ ∂x2 ⎥ ⎢ ∂x2 ⎥⎣ ⎦ ⎣ ⎦ 

⎡8⎤ ⎡0⎤ ⎡0⎤KKT cannot be satisfied: ⎢0⎥
+ λ⎢0⎥

≠ ⎢0⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 

(ii) The quadratic penalty function for this problem is: 

x2 2 ρ 2 3 2Φ = 4 +12  x + [  x − (x −1)  ]  Q 1 2 2 1��	�
  ��	�

f h (1)

=> ∇Φ Q = ∇ + 2ρh h  = 0  for stationary points f ∇ 
From KKT condition, 

∂ΦQ = = x { [  2 
1

3 = 00 > 2 ρ x2 − (x −1)  ]  + 6}  
∂x2 

=> x2 = 0 or, x2
2 − (x1 −1) 3 = − 

6
ρ 

As ρ →∞ , we have x1 =1 and x2 = 0 as the solution. 
Therefore, X * = lim X * ρ = [1 ( ) 0]T . 

ρ→∞ 

Alternative, for KKT condition ∇f + 2 ∇ =ρh h  0 to be satisfied as ρ →∞ , we must 
have h h∇  tending to zero. At (1,0), both h and ∇h  are zero (i.e., the function has 
a singular point). 

(iii) 

The contour plot of the objective function and the constraint shows that the 

gradient vector of the constraint at (1,0) is zero as does the function value. Since 

the LICQ does not hold at this point, the KKT condition is not valid at this point. 
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Fig. 1: Contour plots of the object function and constraint. 

One can also split the equality constraint into two: 

( ) ≡ x − (x −1)3/2 = 0h X1 2 1 

( ) ≡ x + (x −1)3/2 = 0h X2 2 1 

The associated constraint jacobian is: 

⎡ ∂h1 ∂h2 ⎤ 
⎢ ∂x ∂x ⎥ ⎡0 0 ⎤

∇hT = ⎢ 1 1 ⎥ = ⎢ ⎥⎢ ∂h1 ∂h2 ⎥ ⎣1 1  − ⎦
⎢ ⎥
⎣∂x2 ∂x2 ⎦ 

This matrix is singular and its columns are linearly dependent. This violates the 
regularity or LICQ criteria and use of KKT conditions is invalidated. 
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