
16.888/ESD 77 Multidisciplinary System Design

Optimization:


Assignment 3 Part a) Solution 


Part A1 

The absolute error between first and second derivative estimates vis-à-vis their analytical 
value at x =1 by suggested methods is shown in the figure below using log-log plots. 

For estimation of first derivatives, the forward difference is a first order method while 
central and complex step methods are second order. Therefore we expect reduced 
estimation error from the last two methods in general. Looking at the plots, the forward 
difference shows optimal stepsize for all three problems. Central difference method 
shows monotonic behavior for x2 and the estimation error is essentially zero for complex 
step method for this function. This is the case because the function itself is of second 
order or quadratic. The error in central-difference method at very small stepsizes for this 
function is due to loss of precision in the subtraction step. Since there is no subtraction 
operation in complex step, the error remains essentially zero. 
For x3, both central difference and complex step methods shows optimal stepsizes, which 
one usually observes in more general cases. At very small stepsize, the error is primarily 
due to loss of precision and at much larger stepsize, the error is primarily due to 
approximation error. 
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For the second derivative approximation, the absolute error for central-difference method 
grows at a much higher rate for very small stepsize while it levels off for complex step 
estimate. The optimal stepsize for second derivative approximation is much larger as 
compared to the same for first derivative approximation. 

For these three problems, a step size of 10-6 seems adequate if for forward difference 
scheme is used for estimating first derivative. However a larger stepsize of 10-4 or 10-3 

might be adequate for central difference or complex step schemes. For the second 
derivative, a step size of 10-3 would be advisable for these problems. The choice of 
stepsize would also depend on the computational resources/time and the accuracy 
required.   

Part A2 

The revenue from this flight is given by: 

J ( p , p , p ) = p D + p D + p D      (1) 1 2 3 1 1 2 2 3 3 

This function has to be maximized under the equality constraint (i.e., assuming all seats 
are occupied) or you can solve this as an inequality constraint as well, but one can 
observe that this would be active since this is the bounding constraint on the objective 
(e.g., to limit the revenue one needs to set a limit of the available capacity): 

3 3 − 
pi 

ia
h = D

i −150 = ∑a e −150 = 0   (2) ∑ i 
i=1 i=1 

Hence the formal problem statement can be written as: 

min − J 
p 

. = 0s t h 

p
i ≥ 0 

We can write the Lagrangian as follows by replacing the objective function by –J and 
converting into a minimization problem of (-J): 

L = − J + λh   (3) 

Applying KKT condition on the Lagrangian results in ∇ ( 
i
,λ)L p = 0 , which implies; 

p
i = a

i + λ, ∀i      (4) 

3 − 
pi 

∑ i
ia e a 

−150 = 0     (5) 
i=1 
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Using (4) in (5) and then using fsolve in MATLAB®, we get:


λ = 56.7484 

p1 = 156.7484 
   (6) 

p2 = 206.7484 

p3 = 356.7484 

* The optimal revenue, J = $43671 . The demand or number of seats in each category

(after rounding) is: [21, 38, 91].   

To check if it a local minimum, investigate the Hessian of the objective function at the

optimal point:


p1⎡ − ⎤ 
1⎢e

a (2 − p1 / a1) 0 0 ⎥ 
⎢ 

− 
p2 

⎥ ⎡0.0902 0 0 ⎤ 
⎢ a ⎥ ⎢ ⎥

H (− J ) = ⎢ 0 e 2 (2 − p2 / a2 ) 0 ⎥ = ⎢ 0 0.1567 0 ⎥ 
p⎢ − 3 ⎥ ⎢⎣ 0 0 0.2469⎥⎦ a3⎢ 0 0 e (2 − p3 / a3 )⎥


⎢ ⎥
⎣ ⎦ 

which is positive definite since its eigenvalues are all positive (they are in fact the

diagonal entries of the diagonal Hessian matrix above). 


It was derived in class that the largange multiplier λ  is the negative of sensitivity of

objective function to the constraint at the optimum.   

Hence we can write:


d (−J ) 
= − λ 

dN 
d (−J ) = − 56.7484*3 = − 170.24 

Therefore the revenue would increase by $170.24 on increasing the number of seats by 3 
(assuming all seats are occupied). 

Now, the number of seats is increased from 150 to 153. We can solve this problem 
approximately by using sensitivity analysis (rather than solving the optimization problem 
again).    

We can write the constraint equation as: 

i3 3 − 
p 

ih = D − N = a e a 
− N = 0   (7) ∑ i ∑ i 

i=1 i=1 
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where ‘N’ changed from 150 to 153. The sensitivity equations are summarized as below 
(refer to class notes); 

⎡A B⎤ ⎧ δ p⎫ ⎧c ⎫ 
⎢ T ⎥ ⎨ ⎬ + ⎨ ⎬ = 0 
⎣B 0 ⎦ ⎩ δλ ⎭ ⎩d ⎭ 

Aik =
∂

2J 
+ ∑λ j 

∂
2h 

∂pi ∂pk j∈M ∂pi ∂pk 

∂h 
B = ij 

∂pi 

ci =
∂

2J 
+ ∑λ j 

∂
2h 

∂pi ∂N j∈M ∂pi ∂N 

∂h 
d = j 

∂N 
T 

⎧∂p1 ∂p2 ∂p3 
⎫ 

δ p = ⎨ ⎬ 
⎩ ∂N ∂N ∂N ⎭ 
∂λ 

δλ = 
∂N 

Using the values at the optimal solution, this system can be written as: 

⎡ 0.2086 0 0 −0.2086 ⎤ ⎧ 0 ⎫ ⎧ ⎫ 0 
⎢ ⎥ ⎪ ⎪ ⎪ ⎪ 0 0.252 0 0.252 δ p⎫ ⎪ 0 ⎪ 0− ⎧ ⎪ ⎪ ⎢ ⎥ ⎨ ⎬ + ⎨ ⎬ = ⎨ ⎬     (8) 
⎢ 0 0 0.3045 −0.3045 ⎥ ⎩δλ ⎭ 0 0⎪ ⎪ ⎪ ⎪ 

0.2086 −0.252 −0.3045 0 − ⎭ 0 
⎢ ⎥ ⎪ ⎪ ⎪ ⎪ ⎣− ⎦ ⎩ 1 ⎩ ⎭

Solving (8) we get, ⎡
⎢ 
∂p1 = − 1.3071; 

∂p2 = − 1.3071; 
∂p3 = − 1.3071; 

∂λ 
= − 1.3071 

⎤
⎥ . 

⎣ ∂N ∂N ∂N ∂N ⎦ 
Now using the linear approximation, we have: 

Δp = Δ Nδ p = [−$3.92 − $3.92 − $3.92] 

Hence the airline should reduce the ticket price by $3.92 in all segments with the addition 
of 3 seats. 

The new prices in the three categories are: 
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p1 = $152.827 

p2 = $202.827 

p3 = $352.827 

* The optimal revenue, J = $43837 . The demand or number of seats in each category 
(after rounding) is: [22, 39, 92]. The revenue has increased by $166. This is quite close to 
that predicted earlier. Since we have solved it using gradient-based methods although the 
numbers of seats are discrete variables, there are some errors due to rounding operations.  
The results can be checked by re-running the optimization which returns revenue of 
$43835, an increase of $164. This is extremely close to what we got using sensitivity 
analysis.  

Alternative solution method: This problem can be solved in different ways, all using the 
linear approximations.  

Observe the KKT equations (4). We can write, 
∂p

i = 1, ∀i . Now from (5), after replacing 
∂λ 

∂λ 
p

i
’s with λ , and then on differentiation: = − 1.3071 . 

∂N 
∂λ 

Now using linear approximation, Δλ = ΔN = − 3.92 . 
∂N 

∂p
Now we have, Δp = Δ λ = − 3.92*[111] = [−3.92 − 3.92 − 3.92] . 

∂λ 
So we arrive at the same result as before and we can easily compute other quantities of 
importance. 

Part A3 

In minimizing Rosenbrock function, quasi-newton method (implemented in MATLAB’s 
fminunc formulation) was used with random starting points chosen within bounds [-5, 5]. 
Same random number was used for generating the components of the starting vector. This 
makes both components of the starting vector the same in this problem. In all cases, the 
global minimum was found within 6 significant digits. 

Run 
# 

Starting point 
(x0) 

Optimal point 
(x*) 

Optimal objective 
function  

Feasible? Time 
(Sec.) 

1 [1.991, 1.991] [1,1] 0.00000 Yes 0.0274 

2 [3.91, 3.91] [1,1] 0.00000 Yes 0.0351 

3 [4.593, 4.593] [1,1] 0.00000 Yes 0.0386 

4 [0.472, 0.472] [1,1] 0.00000 Yes 0.0215 

5 [-3.6137, -3.6137] [1,1] 0.00000 Yes 0.0258 

6 [-3.5070, -3.5070] [1.1] 0.00000 Yes 0.0252 

7 [-2.424, -2.424] [1,1] 0.00000 Yes 0.0263 

8 [3.4071, 3.4071] [1,1] 0.00000 Yes 0.0358 

9 [-2.4571, -2.4571] [1,1] 0.00000 Yes 0.0232 

10 [3.1428, 3.1428] [1,1] 0.00000 Yes 0.0306 
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For eggcrate function, the same algorithm was employed and it was noticed that gradient-

based optimizer were stuck in the local optima, depending on the starting point that were

chosen randomly within bounds [-2π, 2π]. 

Out of 10 runs, 8 were stuck in a local minimum while 2 found the global optima. 


Run 
# 

Starting point 
(x0) 

Optimal point 
(x*) 

Optimal objective 
function 

Feasible? Time 
(Sec.) 

1 [3.7096, 3.7096] [3.0196, 3.0196] 18.976 Yes 0.02 

2 [-3.9348, -3.9348] [-3.0196, -3.0196] 18.976 Yes 0.016 

3 [-0.1286, -0.1286] [0.0000, 0.0000] 0.00000 Yes 0.011 

4 [-0.6837, -0.6837] [0.0000, 0.0000] 0.00000 Yes 0.011 

5 [1.8386, 1.8386] [3.0196, 3.0196] 18.976 Yes 0.01 

6 [2.631, 2.631] [3.0196, 3.0196] 18.976 Yes 0.011 

7 [3.2, 3.2] [3.0196, 3.0196] 18.976 Yes 0.01 

8 [-2.8145, -2.8145] [-3.0196, -3.0196] 18.976 Yes 0.011 

9 [2.2582, 2.2582] [3.0196, 3.0196] 18.976 Yes 0.01 

10 [1.949, 1.949] [3.0196, 3.0196] 18.976 Yes 0.01 
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Due to the inherent symmetry in the problem, the local optimum were found at either 
[3.0196, 3.0196] or [-3.0196,-3.0196], both yield the function value of 18.976. Note that 
the global optimum of [0.0, 0.0] were found when optimizer started with guess close to 
that point (i.e., it fell within the basin of attraction of the global optimum).  

Finally the Golinski’s speed reducer problem was solved using sequential quadratic 
programming approach (implemented in MATLAB’s fmincon formulation) that handles 
gradient-based constrained optimization problems. This problem has 11 constraints, in 
addition to bound constraints and objective is to minimize the weight of the speed 
reducer. The design space for this problem is quite narrow. The 10 starting points were 
picked at random as before and the quickly optimizer converged to the optimum in all 
cases.  

Run 
# 

Starting point (x0) Optimal point 
(x*) 

Optimal 
objective 

function (kg) 

Feasibl 
e? 

Time 
(Sec.) 

1 [2.646, 0.7046, 17.5078, 7.3462, 
7.3462, 2.9462, 5.023] 

[3.5, 0.7, 17.0, 7.3, 
7.7153, 3.3502, 
5.2867] 

2994.35 Yes 0.030 

2 [2.697, 0.7097, 18.0684, 7.3971, 
7.3971, 2.9971, 5.0485] 

[3.5, 0.7, 17.0, 7.3, 
7.7153, 3.3502, 
5.2867] 

2994.35 Yes 0.032 

3 [3.4234, 0.7823, 26.058, [3.5, 0.7, 17.0, 7.3, 
7.7153, 3.3502, 

2994.35 Yes 0.031 
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5.2867] 

4 [3.2948, 0.7695, 24.643, 7.9948, 
7.9948, 3.5948,5.3474] 

[3.5, 0.7, 17.0, 7.3, 
7.7153, 3.3502, 
5.2867] 

2994.35 Yes 0.045 

5 [2.9171, 0.7317, 20.4881, 
7.6171, 7.6171, 3.2171, 5.1585] 

[3.5, 0.7, 17.0, 7.3, 
7.7153, 3.3502, 
5.2867] 

2994.35 Yes 0.029 

6 [3.5502, 0.795, 
27.452,8.2502,8.2502,3.8502,5.4 
751] 

[3.5, 0.7, 17.0, 7.3, 
7.7153, 3.3502, 
5.2867] 

2994.35 Yes 0.034 

7 [2.6344, 0.7034, 17.3789, 
7.3344,7.3344,2.9344,5.0171] 

[3.5, 0.7, 17.0, 7.3, 
7.7153, 3.3502, 
5.2867] 

2994.35 Yes 0.033 

8 [3.0387, 0.7438, 21.8262, 
7.7387,7.7387, 3.3387, 5.2194] 

[3.5, 0.7, 17.0, 7.3, 
7.7153, 3.3502, 
5.2867] 

2994.35 Yes 0.025 

9 [2.9815, 0.7381, 21.197, 7.6815, 
7.6815, 3.2815, 5.1908] 

[3.5, 0.7, 17.0, 7.3, 
7.7153, 3.3502, 
5.2867] 

2994.35 Yes 0.027 

10 [3.3655, 0.7765, 
25.42,8.0655,8.0655,3.6655,5.38 
27] 

[3.5, 0.7, 17.0, 7.3, 
7.7153, 3.3502, 
5.2867] 

2994.35 Yes 0.043 

The eggcrate function is multi-modal while golinski’s speed reducer weight and 

Rosenbrock’s problem have single minimum. For the eggcrate function, depending on
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where one starts, decides which minimum is found. If one starts near the global 
minimum, it will converge to the global solution.  

Part A4 

The heuristic technique described here pertains to Genetic Algorithms. This problem can 
be handled by using other heuristic methods like simulated Annealing, Particle Swarm 
Optimization, etc. 

The MATLAB GA toolbox is used as the primary optimization tool. The GA 
implementation in MATLAB is a little different that traditional GA. Therefore the 
crossover and mutation parameters used here are a little different. The crossover 
parameter used in MATLAB GA toolbox refers to a fraction which determines how many 
individuals would be picked for crossover operation in a generation. The mutation is 
performed a parent randomly, and the mutation rate is computed based on the diversity of 
the population. For example, in a generation, #individuals subjected to crossover = 
CrossoverFraction*(popsize – elite count); #individuals subjected to mutation = (popsize 
– crossover pop – elite count). The amount of mutation depends on the spread of the 
generation and decreases with increasing generation count. No parent solution is acted 
upon by both crossover and mutation at the same time. The mutation rate can be 
increased by using an increased initial range. In all cases, there are some elite population 
members who are transferred to the next generation automatically.   

In all cases, the following sequence was used to arrive at the tuned parameter set: 

(1) Study the effect of increased generation number and then check the interplay of 
population size and generation number. 

(2) Change the crossover fraction and obtain the best possible setting. 
(3) In case of eggcrate problem, use a higher mutation to explore the design space 

better. The mutation rate should also be a little higher (this means a smaller 
crossover fraction). 

(4) Use mutationadaptfeasible as the mutation function to account for constraints. 
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The final tuned results are shown above. The tuned parameters were: [popsize = 20, 
generation = 50, crossover fraction =0.4, Initial Penalty = 1000, Tolerance Function =1e
16, Elite Count = 3]. In all cases, the solution converged to objective value of 0.00 and 
the optimal point [1, 1]. Observe that, in all cases, GA has converged very close to the 
optimal solution by at most 20 generations and subsequent progress is very slow. This is 
a typical feature of GA’s. 

Next is the eggcrate function. This function is multi-modal (i.e., has multiple minima 
with one global minimum). Care should be taken to ensure that GA avoids being stuck in 
local minima.  
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Incidentally, MATLAB’s default parameters performed quite well on this function. The 
final tuned parameters are: [popsize = 20, Generations = 50, Elite count = 1, Crossover = 
0.8, Initial Penalty = 1000]. In all cases, the solution converged to the global optimum [0, 
0] with objective function value of 0.00, and they converged very close to the solution by 
al most 25 generations. Beyond that it is a very slow progress. At this point, it is better to 
shift to a gradient-based optimizer (if problem type permits) using the best GA solution 
as initial guess. You would notice that the gradient-based optimizer converges to the true 
optimal in very few (generally 2 – 5) iterations. 

For weight minimization of Golinski’s speed reducer, there are 11 constraints, in addition 
to bound constraints. MATLAB’s GA toolbox uses a constraint handling scheme similar 
to that of interior point method. There are two parameters, Initial Penalty and Penalty 
Factor. Initial penalty acts as the penalty factor to start with. If constraints are not 
satisfied on solving the internal subproblem, then the penalty factor is used to increase 
the penalty term. 
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s 
The parameters used in this problem, across different runs are: [popsize=20, generations 
= 50, crossover fraction = 0.9, elite count = 3, initial penalty = 100, penalty factor =10, 
Tolfun = 1e-08, Tolcon = 1e-16]. 
In all cases, solution converged to a weight of around 2994.37 kg, which is very close to 
the solution found by gradient-based method (i.e., 2994.35 kg). In all cases, the solution 
converged to the global optimum [3.5, 0.7, 17.0, 7.3, 7.7154, 3.3502, 5.2867] with 
objective function value of 0.00, and they converged very close to the solution by al most 
15 generations. 

In general, GA performs well on all three problems, but required “tuning” of parameters, 
different for each problem. The computational effort with GA is about 100 times that of 
gradient-based method. In case of eggcrate problem, this is more than 250 times. This is 
due to presence of multiple local minima and GA had to avoid them. Implementation of 
“niching” strategies in the algorithm might improve efficiency. 

(i) Dependence on the initial design vector/population: 

Problem Name Gradient-based Optimizer GA 
Rosenbrock Low (regardless of the starting points, all 

instances converged to the optimal solution). 
Low (this may depend on the 

“tuning” parameters) 

Eggcrate High Low (depends on the tuning 
parameters selected) 

Golinski’s speed 
reducer 

Low Low (converges very close to 
global optimum quite quickly) 
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(ii) Computational effort in terms of CPU time:


Problem Name Gradient-based 
Optimizer (Sec.) 

GA (Sec.) 

Rosenbrock 0.028 2.69 

Eggcrate 0.01 2.5 

Golinski’s speed reducer 0.04 48 

(iii) Convergence history:


Problem Name Gradient-based Optimizer GA 
Rosenbrock Always converged to global minimum. Converged, but efficiency 

depends on the tuning 
parameters selected. 

Eggcrate Always converged, but either a local or a global 
minimum. 

Converged, but efficiency 
depends on the tuning 
parameters selected. This 
took more time (about 250 
times more than gradient-
based method) due to 
presence of local 
minimum. The efficiency 
can be improved further by 
embedding “niching” 
techniques that modifies 
the mating criteria. 

Golinski’s speed 
reducer 

Always converged to the global minimum. Converged, but efficiency 
depends on the tuning 
parameters selected. 

(iv) Frequency of getting trapped in a local minimum:


Problem Name Gradient-based Optimizer GA 
Rosenbrock zero zero 

Eggcrate 80% zero 

Golinski’s speed reducer zero zero 

Comments: 

1.	 Gradient-based optimizers can get stuck in local optima and are sensitive to the 
starting point, especially if there are multiple optima in the design space. 

2.	 Genetic Algorithms are computationally expensive and requires considerable 
“tuning” effort, especially for complex problems. The GA toolbox in MATLAB is 
not the most efficient of implementations and does not follow the traditional GA 
parameters. This might make the tuning process more challenging.  
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3.	 An idea of the design space is often very helpful to tune, both gradient-based and 
Genetic Algorithms and can significantly expedite the convergence.  

4.	 Genetic Algorithms can improve the objective function quickly but tends to slow 
down as it approaches the global minimum. 

In general, the above comments would hold. An understanding of the problem being 
solved and its associated design space would go a long way in solving optimization 
problem more appropriately/efficiently. Generally GA is very helpful to explore the 
design space when the problem at hand is not very well-understood. 
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