
16.888/ESD 77 Multidisciplinary System Design

Optimization:


Assignment 5 Part a) Solution


Part A1 

Recap from A4: This problem relates to A4 and the optimal solutions obtained by using 
SQP exhaustively for all possible discrete variable settings is shown in table below: 

Problem 
formulation 

with SQP 

b (m) t 
(m) 

h 
(m) 

w 
(m) 

d (m) Beam 
materi 

al 

Support 
Material 

# 
beams 

Optimal 
Cost 

w/o shear stress 
constraint 

0.3471 0.01 2.0 0.374 0.374 A514 Concrete 1 $5771.3 

With constraint 
linking beam 

width (b), 
number of 

beams (N) and 
support depth 

(d) 

0.3471 0.01 2.0 0.3664 0.3971 A514 Concrete 1 $5774.1 

We will use the optimal vector thus obtained to answer all subsequent questions, 
wherever applicable. 

(a) Here the applied load is given as: F = q*L and q (load per unit length) becomes an 

additional continuous design variable. For calculation of the Jacobian, we have to leave

out the discrete variables like material id’s and number of beams. 

The Jacobian with respect to continuous design variables can be written as:


T

⎡ 2At 0⎤ 
⎢ ⎥ 
⎢A(2 b + h − 4 ) t 0⎥ 

⎡∂C ∂F ⎤
T ⎢ At 0⎥ 

Jacobian = = ⎢ ⎥ where X = [b t h w d q]'; A = c L ρ n ; B = c ρ H⎢ ⎥ b b b s s
⎣∂X ∂X ⎦ ⎢ Bd 0⎥


⎢ Bw 0⎥

⎢ ⎥ 
⎣ 0 L⎦ 

Using the given data, we have, A=213.3e+3 ($/m2) for beam and B=0.48e+03 ($/m2) for 
concrete column. 

Note this analysis will also depend on your problem formulation in A4 and would be 
carried over while tackling this question.  
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Considering the formulation laid out in A4, the Jacobian for the case where no shear 
stress constraint and no constraint on internal dependency of beam flange width with 
support column depth (d) is given by: 

T

⎡ 4266 0 ⎤ 
⎢ ⎥ 
⎢566141 0 ⎥ 
⎢ 2133 0 ⎥ 

Jacobian = ⎢ ⎥ 
⎢ 163.2 0 ⎥ 
⎢ 180 0 ⎥ 
⎢ ⎥ 
⎣ 0 30⎦ 

For the other case where we consider shear stress constraint and also a constraint on 
internal dependency of beam flange width (b) and column depth(d), the Jacobian is: 

T

⎡ 4266 0 ⎤ 
⎢ ⎥ 
⎢566141 0 ⎥ 
⎢ 2133 0 ⎥ 

Jacobian = ⎢ ⎥ 
⎢ 191 0 ⎥ 
⎢ 176.4 0 ⎥ 
⎢ ⎥ 
⎣ 0 30⎦ 

Notice the sensitivity of cost to the beam thickness (t). Also notice the changes in 
sensitivity ordering between column width (w) and column depth (d) in these two cases. 

Note: You can formulate/interpret this problem in various ways. The solution outlined 
considers two functions around the optimal cost design and does not look at the overall 
constrained problem. One can also think in terms of 5 design variables [b t h w d] and 
compute the sensitivity of F = qL with all constraints being active at the optimal point. 
This can be represented as, q = min{q1, q2, q3, q4} where qi refers to ith stress constraint 
and F = qL. 

At the minimal cost design, the beam bending stress limit yields the limiting allowable 
load on the bridge. Therefore we can write q as: 

1 ⎡112 ×10 8 I
beam 6 ⎤ 

⎢ −17.4373 ×10 {2 bt + (h − 2 ) } ⎥q = t t 
225 ⎣ h ⎦ 

(1) 
t 3 

⎡bt 3 
⎛ h t ⎞

2 ⎤ 
where I

beam = (h − 2 ) t + 2 ⎢ + bt ⎜ − ⎟ ⎥ 
12 ⎢⎣ 12 ⎝ 2 2 ⎠ ⎥⎦ 
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Using (1) in F=qL and apply partial differentiation at the optimal point, we can write the 
Jacobian with 5 design variables {b t h w d} as (the row corresponding to cost does not 
change): 

T

⎡ 4266 14.738 ×10 6 ⎤ 
⎢ 6 ⎥ 
⎢566141 970.2 ×10 ⎥ 

6Jacobian = ⎢ 2133 7.47 ×10 ⎥ 
⎢ ⎥ 
⎢ 191 0 ⎥ 
⎢ ⎥
⎣ 176.4 0 ⎦ 

The constraining load intensity does not involve {w d} and therefore associated 
sensitivities are zero. Note that the Jacobian would change its structure if limiting load 
intensity was due to a different stress constraint. 

(b) In this case of finding target isocost designs, formulation with constraints on shear 
stress and internal dependency between ‘b’ and ‘d’ was used and the discrete variables 
were help constant at theirs values at optimal design. The basic goal programming 
formulation can be written as: 

* * min  goal = ||Cost-1.1C ||  where C  = the optimal cost 
X 

2t 
s t . ≤ 1 

h

t


≤ 1 
b 
σ ≤ σ

bending ,failure bending 

σ ≤ σ
shear ,failure shear 

σ ≤ σ sup port failure ,sup port 

P ≤ P
applied critical ,sup port 

d ≥ b + 0. 05

     0.1 m ≤ b ≤ 1 m

     0.01 m ≤ t ≤ 0.5 m

     0.1 m ≤ h ≤ 2 m

     0.2 m ≤ w ≤ 2 m

     0.3 m ≤ d ≤ 3 m 

The table below shows two such isocost designs: 

b 
(m) 

t 
(m) 

h 
(m) 

w 
(m) 

d 
(m) 

Beam 
material 

Support 
material 

# 
beams 

q (N/m) Cost ($) 

0.3183 0.012 1.83 0.494 0.3952 A514 
Steel 

Concrete 1 33e+4 6351.51 

0.2514 0.012 1.97 0.469 0.3523 A514 
Steel 

Concrete 1 33e+4 6351.51 
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One of the design keeps only two variables (‘b’ and ‘t’) changes values from the optimal 
design, where as the other design changes all design variables to varying degrees. The 
first design (first row on table above) reflects a wider column and a shallower beam 
height. The second row indicates narrower beam with increased height. 

(c) In this case, the Normal Boundary Intersection (NBI) method is used as the multi-
objective optimization algorithm. Since we are keeping the discrete variables constant 
and varying only the continuous variables, we can use gradient-based methods for 
optimization. 

Fig. 1: (a) Pareto front without shear constraints; (b) with shear and constraint on column depth. 

The active constraints are primarily the bending stress in beam and column allowable 
load. In the case of constraint linking the beam width and column depth, this constraint is 
also active. Notice that the Pareto front has two different regimes. It is linear at lower 
leads and is nonlinear beyond an applied load of about 2.17e+8 (N). 
In both cases, the beam width (b) reaches its upper limit in all cases except at minimal 
cost design. The same is true for beam height (h). The column width (w) increases 
steadily as the load goes up, then alternates and finally hits its upper limit at maximal 
load design. The same is true for column depth (d). The beam thickness increase steadily 
as the applied load increase, but never hits its upper limit. There is no feasible design 
with given materials and number of beams for higher applied loads. 

(d) The Pareto front found above is almost linear in the moderate to high load range and 
exhibits non-linear behavior only for extremely high loads. 

In moderate to high applied load range, the plot shown above has a slope ~20.3 (N/$). 
This means that the cost vs. applied load (F = q*L) has a slope of ~2030 (N/$). This 
means that a nominal increase in cost can help support a much larger increase in applied 
load. 

(e) The Pareto front in chosen representation is concave. This is because one of the 
objectives here is being maximized. If the plot is generated where cost and (–applied 
load) are minimized, it would be convex. 
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Bonus: In this case, the design space is expanded to include three additional integer 
design variables. This necessitates the use of heuristic multi-objective optimization 
methods that can handle continuous and integer variables simultaneously. A multi-
objective genetic algorithm is used to generate the Pareto front in this case. The Pareto 
front generated for the case with constraint linking beam width to column depth, is shown 
below: 

One can observe that it is possible to handle increased applied loads with increased 
number of beams with different combination of materials. There are different regimes in 
the Pareto front and one striking thing is that there are no solutions with the same 
material and number of beams combination as found in the minimal cost design before. It 
means that both objectives, higher load carrying capacity and lower cost designs can be 
met by changing the materials and number of beams. The minimal cost design found 
earlier for a given load becomes a dominated design now. 
Another interesting feature is that the designs with 1 beam spans the different regions in 
the Pareto front by varying the materials used for beam and support, in addition to their 
cross-sectional dimensions. This illustrates the importance of material selection in design. 
The active constraints involve the bending stress in beam, the allowable load on the 
column and constraint linking column depth to beam width. In some cases (especially 
with higher critical loads), the critical load on column also becomes active. 

The Pareto front will definitely depend on the problem formulation itself. The final front 
also depends on the discretization of the design variables (i.e., number of bits required to 
represent the design variable), the crossover and mutation rates used. 
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