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Heuristic Search Techniques

Main Motivation for Heuristic Techniques:

(1) To deal with local optima and not get trapped in 

them

(2) To allow optimization for systems, where the 

design variables are not only continuous, but discrete 

(categorical), integer or even Boolean

These techniques do not guarantee that

global optimum can be found. Generally

Karush-Kuhn-Tucker conditions do not apply.

xi ={1,2,3,4,5}, xi ={„A‟,‟B‟,‟C‟} xi ={true, false}

x
J

ix R
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Principal Heuristic Algorithms

• Genetic Algorithms (Holland – 1975)

– Inspired by genetics and natural selection – max fitness

• Simulated Annealing (Kirkpatrick – 1983)

– Inspired by statistical mechanics– min energy

• Particle Swarm Optimization (Eberhart Kennedy - 1995)

– Inspired by the social behavior of swarms of insects or 

flocks of birds – max “food”

These techniques all use a combination of

randomness and heuristic “rules” to guide

the search for global maxima or minima
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Today: Genetic Algorithms

• Genetics and Natural Selection

• A simple genetic algorithm (SGA)

• “The Genetic Algorithm Game”

• Encoding - Decoding (Representation)

• Fitness Function - Selection

• Crossover – Insertion - Termination
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Premise of GAs

• Natural Selection is a very successful organizing 
principle for optimizing individuals and populations of 
individuals

• If we can mimic natural selection, then we will be able 
to optimize more successfully

• A possible design of a system – as represented by its 
design vector x - can be considered as an individual 
who is fighting for survival within a larger population.

• Only the fittest survive – Fitness is assessed via 
objective function J. 
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MATLAB® GA demo (“peaks”)

• Maximize “peaks” function

• Population size: 40

• Generations: 20

• Mutation Rate: 0.002

-Observe convergence

-Notice “mutants”

-Compare to gradient search
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Natural Selection

Charles Darwin (1809-1882)

Controversial and very influential book (1859)

On the origin of species by means of natural 

selection, or the preservation of favored races

in the struggle for life

Observations:

• Species are continually developing

• Homo sapiens sapiens and apes have common ancestors

• Variations between species are enormous

• Huge potential for production of offspring, but only

a small/moderate percentage survives to adulthood

Evolution = natural selection of inheritable variations



8 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

Engineering Systems Division and Dept. of Aeronautics and Astronautics

Inheritance of Characteristics

Gregor Mendel (1822-1884)
Investigated the inheritance of characteristics (“traits”)

Conducted extensive experiments with pea plants

Examined hybrids from different strains of plant

Character (gene) for tallness is dominant

Character (gene) for shortness is recessive

Tall Tall

Tall

Tall Short

Tall

Short

Short

Short

Image by MIT OpenCourseWare.
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GA Terminology
chromosome

gene

Generation n+1

selection 

crossover

insertion

mutation

genetic

operators

population

Generation n

individuals
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Chromosomes
Chromosome (string)

gene

0   1   0   1   1   1   1   0   1   0   0   1   …..  0   1 

alleles

Each chromosome represents a solution, often

using strings of 0‟s and 1‟s. Each bit typically

corresponds to a gene. This is called binary

encoding.

The values for a given gene are the alleles.

A chromosome in isolation is meaningless -

need decoding of the chromosome into phenotypic values
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GA over several generations

Initialize Population (initialization)

Select individual for mating (selection)

Mate individuals and produce children (crossover)

Mutate children (mutation)

Insert children into population (insertion)

Are stopping criteria satisfied ?

Finish
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Ref: Goldberg (1989)
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“The GA Game”

Ca. 15 minutes

1 1 1

2 1 2

3 1 3

4 5 20

5 8 40

6 9 54

7 6 42

8 3 24

9 3 27

10 3 30

11 0 0

12 0 0

40 6.075

GA Game Initial Population
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Generation 1:

Population size:  N=40

Mean Fitness:     F=6.075

(Fitness F = total number of 1‟s in chromosome)

0 <= F <= 12 Goal: Maximize Number of “1”s
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Creating a GA on Computer

(1)  define the representation (encoding-decoding)

(2)  define “fitness” function F

- incorporate feasibility (constraints) and objectives

(3)  define the genetic operators

- initialization, selection, crossover, mutation, insertion

(4)  execute initial algorithm run

- monitor average population fitness

- identify best individual

(5)  tune algorithm

- adjust selection, insertion strategy, mutation rate
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Encoding - Decoding

phenotypegenotype

Biology

Design

“blue eye”UGCAACCGU
(“DNA” blocks)

10010011110

expression

(chromosome)

decoding

encoding

Radius R=2.57 [m]

H

sequencing

coded domain decision domain

Genetic Code: (U,C,G,A are the four bases of the nucleotide

building blocks of messenger-RNA): Uracil-Cytosin-

Adenin-Guanin - A triplet leads to a particular aminoacid (for protein 

synthesis) e.g. UGG-tryptophane
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Decoding

0   1   0   1   1   1   1   0   1   0   0   1   …..  0   1 

Radius (genotype) Height

Coding and decoding MATLAB® functions available:
decode.m, encode.m

E.g. binary encoding of integers:   

10100011

(1*27+0*26+1*25+0*24+0*23+0*22+1*21+1*20)

128 +  0   + 32 +  0  +  0   +  0  +   2   +   1   =  163

Material

x1 x2 xn
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Binary Encoding Issues

Number of bits dedicated to a particular design

variable is very important.

Resolution depends on:

- upper and lower bounds  xLB, xUB

- number of bits

xLB xUB

x=(xUB- xLB)/2nbits

x

[G]=encode(137.56,50,150,8)

G = 1     1     0     1     1     1     1     1

[X]=decode(G,50,150,8);

X = 137.4510 So x= (150-50)/28 = 0.39 

Example

Loss in precision !!!

Number of bits needed:

ln

ln 2

UB LBx x

x
nbits
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Other Encoding Schemes

Not all GA chromosomes are binary strings

Can use a different ALPHABET for GA coding

Most common is binary alphabet {0,1}

can also have

- ternary:    {0,1,2}  {A,B,C}

- quaternary:  {0,1,2,3}  {T,G,C,A} => biology

- integer:  {1,2,….13,….}

-real valued: {3.456 7.889 9.112}

-Hexadecimal {1,2,..,A,B,C,D,E,F}  
Used for Traveling

Salesman Problem

The set of symbols

is the “alphabet”
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A representation for the fire

station location problem

1 0 1 0 1 0 0 0 0 1 0 0 1 0 “1” represents a fire station

1
2 3 4

5
6

7

9

8

10

1413

1211

Image by MIT OpenCourseWare.
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Fitness and Selection Probability

Typically, selection is the most important and

most computationally expensive step of a GA.

01001110101 decode

1 1.227

Al-7075n

x

x

Evaluate

objective

function

J f x

Map raw

objective

to Fitness
( )F f J

F drives probability

of being selected

( )P selected F

yes

no simcode
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Fitness Function

• Choosing the right fitness function is very 

important, but also quite difficult

• GAs do not have explicit “constraints”

• Constraints can be handled in different ways:

– via the fitness function – penalty for violation

– via the selection operator (“reject constraint violators”)

– implicitly via representation/coding e.g. only allow 

representations of the TSP that correspond to a valid tour

– Implement a repair capability for infeasible 

individuals

Choosing the right fitness function: an important

genetic algorithm design Issue
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Maximization vs. Minimization

There are many ways to convert a minimization

problem to a maximization problem and vice-versa:

• N-obj

• 1/obj

• -obj
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Selection by Ranking

• Goal is to select parents for crossover

• Should create a bias towards more fitness

• Must preserve diversity in the population

Example:  Let

select the kth most fit member of a population

to be a parent with probability 11
kP D

k

1
j P

D j

(1) Selection according to RANKING

Better ranking has a higher probability of being

chosen, e.g. 1st 1, 2nd 1/2,  3rd 1/3 ...



23 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

Engineering Systems Division and Dept. of Aeronautics and Astronautics

Selection by Fitness

(2) Proportional to FITNESS Value Scheme

Example:  Let

select the kth most fit member of a population

to be a parent with probability 
1( )kP Fitness k F

j P
F Fitness j

Probability of being selected for crossover is

directly proportional to raw fitness score.
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Roulette Wheel Selection

Roulette Wheel Selection

1

2

3

4
5

6

Probabilistically select 

individuals based on 

some measure of their 

performance.

Sum
Sum of individual‟s

selection probabilities

3rd individual in current

population mapped to interval

[0,Sum]

Selection: generate random number in [0,Sum]

Repeat process until desired # of individuals selected

Basically: stochastic sampling with replacement (SSR)
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Tournament Selection

2 members of current

population chosen randomly

Dominant performer

placed in intermediate

population of survivors

Population

Filled ?

Crossover and

Mutation form new

population

Old Population Fitness

101010110111 8

100100001100       4

001000111110 6

Survivors Fitness

101010110111 8

001000111110 6

101010110111 8

n

y
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Crossover

0   1   0   1   1   1   1   0   1   1   1  1   …..  1   1 

1   1   1   0   0   1   0   0   0   1   0   1   …..  0   0 

P1

P2

O1

O2

Question: How can we operate on parents P1 and P2 to

create offspring O1 and O2 (same length, only 1‟s and 0‟s)?

crossover

?

?
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Crossover in Biology

a b c d

Crossover produces

either of these results

for each chromosome

ac

ac OR ad OR bc OR bd

Child

P1 P2

This is where

the word 

crossover

comes from
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Crossover Operator (I)

Crossover (mating) is taking 2 solutions,

and creating 1 or 2 more

Classical:  single point crossover

0  1  1  0  1

1  0  0  1  1

The  parents

0   1   1   1   1

1   0   0   0   1

crossover

point

The  children

(“offspring”)

P1

P2

O1

O2
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Crossover Operator (II)

0  1  1  0  1

1  0  0  1  1

0   1   1   1   1

1   0   0   0   1

P1

P2

C1

C2

A crossover bit  “i” is chosen (deliberately or randomly),

splitting the chromosomes in half.

Child C1 is the 1st half of P1 and the 2nd half of P2

Child C2 is the 1st half of P2 and the 2nd half of P1

More on 1-point crossover ….

i=3 i=3

l=length

of chromosome

l=5
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Crossover Operator (III)

• One can also do a 2-point crossover or a 

multi-point crossover

• The essential aspect is to create at least 

one child (solution/design) from two (or 

more) parent (solutions/designs)
• there are many solutions to do this

Some crossover operations:

- single point, versus multiple point crossover

- path re-linking
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Path Relinking

• Given Parents P1 and P2

• Create a sequence of children

– The first child is a neighbor of P1

– Each child is a neighbor of the previous child

– The last child is a neighbor of P2

P1
P2

C1
C2

Cn...
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Example: Path Relinking

Parents

1  0  0  1  0  0  1 and 0  0  1  0  1  0  0P1 P2

Children

1  0  0  1  0  0 0

1  0  0  1  1 0  0

1  0  0  0 1 0  0

1  0  1 0 1 0  0

Create a path of children,

then select the best one.

Good approach, but solutions

tend to be interpolations of

initial population.
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Some Insertion Strategies

• Can replace an entire population at a time (go from 

generation k to k+1 with no survivors)
- select N/2 pairs of parents

- create N children, replace all parents

- polygamy is generally allowed

• Can select two parents at a time
- create one child

- eliminate one member of population (weakest?)

• “Elitist” strategy

- small number of fittest individuals survive unchanged

• “Hall-of-fame”

- remember best past individuals, but don‟t use them for progeny

N = # of members

in population 

if steady state 
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Initialization

• Random initial population, one of many options

• Use random number generator to create initial population 
(caution with seeds !)

• Typically use uniform probability density functions (pdf‟s)

• Typical goal: Select an initial population that has both 
quality and diversity

Somehow we need to create an initial population of

solutions to start the GA. How can this be done?

Example:
Nind - size of binary population

Lind - Individual chromosome length

Need to generate Nind x Lind random numbers from {0,1} 

round(rand(1,6))   >>  1 1 1 1 0 0

Rule of thumb: Population Size at Least  Nind ~ 4 Lind
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GA Convergence

Typical Results

generation

global

optimum

(unknown)

Converged too

fast (mutation rate

too small?)

Average performance of individuals in a 

population is expected to increase, as good individuals

are preserved and bred and less fit individuals die out.

Average

Fitness
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GA Stopping Criteria

Some options:

• X number of generations completed - typically O(100)

• Mean deviation in performance of individuals in the 

population falls below a threshold J<x (genetic 

diversity has become small)

• Stagnation - no or marginal improvement from one 

generation to the next: (Jn+1-Jn)<X
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GAs versus other methods

Differ from traditional search/optimization methods:

• GAs search a population of points in parallel, not 

only a single point

• GAs use probabilistic transition rules, not 

deterministic ones

• GAs work on an encoding of the design variable 

set rather than on the variables themselves

• GAs do not require derivative information or other 

auxiliary knowledge - only the objective function 

and corresponding fitness levels influence search
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Next Lecture

• Speciality GA‟s

• Particle Swarm Optimization (PSO)

• Tabu Search (TS)

• Selection of Optimization Algorithms

– Which algorithm is most suited to my problem?

• Design Optimization Applications
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