

Flexibility in Multidisciplinary Design: Theory and Experimental Validation

Michel-Alexandre Cardin, PhD Candidate Prof. Olivier de Weck ESD.77/16.888

Outline

Introduction

- Flexibility in Systems Design Emphasis on "Infrastructures"
 - □ Garage Case Example

Experimental Research

- Design of Experiment
- Preliminary Analysis and Results

Discussion

Risk Categories

Value at Risk Concept

Value at Risk (VAR) recognizes fundamental reality: actual value of any design or project can only be known probabilistically

Because of inevitable uncertainty in
 Future demands on system
 Future performance of technology
 Many other market, political factors

Systems that Suffered Because of Unmitigated Risk

B-58 Hustler (1960-70)

... Originally intended to fly at high altitudes and speeds to avoid Soviet fighters, the introduction of highly accurate Soviet surface-to-air missiles forced the B-58 into a low-level penetration role that severely limited its range and strategic value. This led to a brief operational career between 1960 and 1969.

Iridium Constellation (1997-)

Iridium went public in 1997 with an ambitious plan to use a 66-satellite constellation of low earth orbit satellites to compete with the mobile phone companies in the market for wireless communications. But for a host of reasons ... there were a host of regulatory, marketing and technical complications. By 1999, the company had filed Chapter 11.

Engineering Systems Division

Value at Risk Definition

□Value at Risk (VAR) definition:

- A loss that will not be exceeded at some specified confidence level
- "We are p percent certain that we will not loose more than V dollars on this project"

□VAR easy to see on cumulative probability distribution (see next figure)

VAR Cumulative Distribution Function

Look at distribution of NPV of designs A, B:

- 90% VAR for NPVA is -\$91M
- 90% VAR for NPVB is \$102M

Ø

Delt

Delft University of Technology

VAR and Flexibility

□ VAR is a common financial concept

□ It stresses downside losses, risks

However, designers also need to look at upside potential: "Value of Gain"

Flexibility in design provides value by both:

- Decreasing downside risk
- Increasing upside potential
- See next figure

Sources of Value for Flexibility

Cut downside ; Expand Upside

ESD

Why Focus on Flexibility?

Uncertainty affects future performance

- Wide-spread engineering practice is very "deterministic"
 - Optimize to "fixed" objectives or forecasts
 - Easy to be "sub-optimal" in the real world
 - Sensitivity analysis done ex post
- Flexibility shown to improve expected value and performance significantly (10% to 80% vs. initial design)
 - Example case studies in aerospace, automotive, mining, oil, real estate industries
 - See
 - http://ardent.mit.edu/real options/Common course materials/papers.html
 - http://strategic.mit.edu

ESD

What Do We Mean by "Flexibility"?

Citygroup Campus, Court Square One and Two, Long Island, New York

Start smaller

Reduce exposure to downside risk of overcapacity

Pearson and Wittels, 2008

Expand when needed

Extra gains on upside opportunity

Other Real-World Examples

Ponte 25 de Abril, Lisbon

http://en.wikipedia.org/wiki/File:Ponte25Abril1.jpg

Bluewater commercial center parking garage, U.K.

Parking Garage Project Example

<u>Valuing Options by Spreadsheet: Parking Garage Case Example</u> Richard de Neufville, Stefan Scholtes and Tao Wang -- ASCE Journal of Infrastructure Systems, Vol.12, No.2. pp. 107-111, 2006

Intended "Take-Aways"

Design project for fixed objective (mission or specifications) is engineering base case

Can use optimization as discussed in this class

 $\Box \operatorname{Recognizing} \operatorname{uncertainty} \Rightarrow \operatorname{different} \operatorname{design}$ (because of system non-linearities)

□ Harnessing flexibility ⇒ even better design (it avoids costs, expands only as needed)

Parking Garage Case

Garage in area where population expands
 New commercial/retail opportunities

Actual demand is necessarily uncertain
 Demand drives capacity for # of parking spots

Design Opportunity: Strengthened structure
 Enables future addition of floor(s) (flexibility)
 Costs more initially (flexibility costs) for same capacity

Design issue: is extra cost worthwhile?

Parking Garage Case Details

Demand

- At start is for 750 spaces
- Over next 10 years is expected to rise (exponentially) by another 750 spaces
- After year 10 maybe 250 more spaces
- could be 50% off the projections, either way;
- Annual volatility for growth is 10%
- Consider 20 years

Average annual revenue/space used = \$10,000

□ The discount rate taken to be 12%

Parking Garage Details (Cont)

Costs

- annual operating costs (staff, cleaning, etc.) = \$2,000 /year/space available
 - (note: spaces used is often < spaces available)
- Annual lease of the land = \$3.6 Million
- construction cost = \$16,000/space + 10% for each level above the first level

□ Site can accommodate 200 cars per level

Step 1: Set Up Base Case

Demand growth as predicted, no variability

Year	0	1	2	3	11	19	20
Demand		750	893	1,015	//	1,688	1,696
Capacity		1,200	1,200	1,200		1,200	1,200
Revenue		\$7,500,000	\$8,930,000	\$10,150,000	$\langle \rangle$	\$12,000,000	\$12,000,000
Recurring Costs							
Operating cost		\$2,400,000	\$2,400,000	\$2,400,000		\$2,400,000	\$2,400,000
Land leasing cost	\$3,600,000	\$3,600,000	\$3,600,000	\$3,600,000))	\$3,600,000	\$3,600,000
Cash flow		\$1,500,000	\$2,930,000	\$4,150,000		\$6,000,000	\$6,000,000
Discounted Cash Flow		\$1,339,286	\$2,335,778	\$2,953,888		\$696,641	\$622,001
Present value of cash flow	\$32,574,736	۲					
Capacity costs for up to two levels	\$6,400,000	canex=	= capital	expendit	ires=	=initial inv	estment
Capacity costs for levels above 2	\$16,336,320	Jeaper	cupitai	experiate			councile
Net present value	\$6,238,416						

Optimal Design for Base Case No Uncertainty

Step 2: Simulate Uncertainty

NPV Cumulative Distributions

Compare CDF of (5 FI) with (unrealistic) fixed 6 FI design

Delft

Delft University of Technology

Recognizing Uncertainty \Rightarrow Different Design (5 floors)

Step 3: Introduce Flexibility into Design (Expand only When Needed)

Year	0	1	2	3	11	19	20
Demand		820	924	1,044		1,519	1,647
Capacity		800	800	1,200		1,600	1,600
Decision on expansion			expand				
Extra capacity			400		$\langle \langle \rangle$		
Revenue		\$8,000,000	\$8,000,000	\$10,440,000	$\langle \rangle$	\$15,190,000	\$16,000,000
Recurring Costs							
Operating cost		\$1,600,000	\$1,600,000	\$2,400,000		\$3,200,000	\$3,200,000
Land leasing cost	\$3,600,000	\$3,600,000	\$3,600,000	\$3,600,000		\$3,600,000	\$3,600,000
Expansion cost			\$8,944,320			1	
Cash flow		\$2,800,000	-\$6,144,320	\$4,440,000		\$8,390,000	\$9,200,000
Discounted Cash Flow		\$2,500,000	-\$4,898,214	\$3,160,304	11	\$974,136	\$953,734
Present value of cash flow	\$30,270,287						
Capacity cost for up to two levels	\$6,400,000						
Capacity costs for levels above 2	\$7,392,000						
Price for the option	\$689,600						
Net present value	\$12,878,287						

Including Flexibility \Rightarrow Another, better design:

4 Floors with strengthened structure enabling expansion

Summary of Design Results from Different Perspectives

Perspective	Simulation	Option Embedded	Design	Estimated Expected NPV
Deterministic	No	No	6 levels	\$6,238,416
Recognizing Uncertainty	Yes	No	5 levels	\$3,536,474
Incorporating Flexibilty	Yes	Yes	4 levels with strengthened structure	\$10,517,140

Why is the optimal design much better when we design with flexibility?

Sources of Value for Flexibility

1) Minimize exposure to downside risk

Sources of Value for Flexibility

2) Maximize potential for upside gain

Ø

Deltt

Delft University of Technology

Comparison of Designs With and Without Flexibility

_				
	Design	Design with Flexibility Thinking	Design without Flexibility thinking	Comparison
		(4 levels, strengthened structure)	(5 levels)	
	Initial Investment	\$18,081,600	\$21,651,200	Better with options
	Expected NPV	\$10,517,140	\$3,536,474	Better with options
	Minimum Value	-\$13,138,168	-\$18,024,062	Better with options
_	Maximum Value	\$29,790,838	\$8,316,602	Better with options

Wow! Everything is better! How did it happen?

Root cause: change the framing of the problem

- recognize uncertainty
- add in flexibility thinking

However, this does not come naturally to most engineers and managers. It often seems "safer" to retreat to the simplicity of the base case.

ESD

A "Complete" Flexible Design Approach Contains the Following...

□ Four elements are necessary

- 1. A base case without flexibility
 - Need to measure value of flexibility relative to a base case. Flexibility generates value relative to base case
- 2. Uncertainty that is being addressed
 - What causes the volatility in outcome?
- **3.** How flexibility is embedded in the design
 - □ What "real options" are embedded and how, where?
- 4. When flexibility will be exercised
 - Conditions, incl. timing under which flexible options should be exercised (triggered)

Experimental Design Validation Research

- Develop new design procedure to guide creative thought process for flexibility
 - Access valuable "low-hanging" opportunities in early design phase
- □ Test in "controlled" experimental setting
 - Easily repeated for statistical analysis
 - Different from typical case study approach
- Develop new methodology to evaluate design process improvement <u>quantitatively</u>

Motivation

Designing flexible infrastructures is not easy

- Communication/information issues
- Many uncertainties, where to focus?
- How to enable and manage in complex systems?
- Current design procedures non-systematic and/or overly complex
 - Direct interactions" (e.g. Lin, 2009)
 - Based on Design Structure Matrix (sDSM, CPA, C-DSM)
 - Screening models
- Current design procedure validation methodologies focus on <u>qualitative</u> assessment of process and outcome

Research Questions

Methodological

"Is it possible to develop a performance-based validation methodology for a proposed design procedure different from the ones available today, which focus on impressions of quality of the process and outcome?"

Substantive

Does the proposed design procedure lead to demonstrable, quantitative performance improvements compared to a initial benchmark?"

Proposed Design Procedure

Two factors

- Education mechanism about flexibility in infrastructure design and management
- Idea creation ("ideation") mechanism
- Education mechanism (E)
 - Only prior training in engineering and applied sciences (-)
 - Short lecture on flexibility (+)
- Ideation mechanism (I)
 - Free undirected (-)
 - Collaborative, directed based on "prompting" (+)

Design Ideation Sessions

Collaborative sessions

- Simplified real estate infrastructure design problem
- Teams of 3 designers: ESD.344, 15.428, ESD.77 grad students
- Controlled "lab" environment: do the same for ALL teams
- Each team does **<u>two</u>** 25 minutes sessions
 - Session 1: within-group "control" procedure (exp't 1)
 - Session 2: 1 of 4 possible exp'ts in 2 x 2 DOE setup

Ideation	Education Mechanism (E)			
Mechanism (I)	Prior Training Only (-)	Lecture on Flexibility (+)		
Free-undirected (-)	Exp't 1	Exp't 3		
Prompting (+)	Exp't 2	Exp't 4		

Session Description - Intro

Design problem presentation

- Real estate multi-family residential development project: condo and/or apartment building
- Market description
- Suggested benchmark design

□ Task assignment

 Recommend alternative designs with goal of improving expected performance (i.e. ENPV)

Session Description - Ideation

Using online Group Support System (GSS) software ThinkTank®

- Extract design recommendations using coding procedure on ideation reports
- Flexible design alternative(s) implemented using Excel Monte Carlo simulation model
- \square Assess ideation quality: " Δ " between S1 and S2
 - Number of "complete" flexibility ideas
 - Number of "good" flexibility ideas
 - "Absolute" ENPV improvement vs. benchmark design
- □ Statistical analysis: permutation/randomization

Design Alternatives Implementation

Excel Monte Carlo simulation model

NPV w Flexible Choice Each Phase:				
		Phase 1	Phase 2	Phase 3
Year	0	1	2	3
Next Phase Developed As:	CONDO	CONDO	APT	
Sales Price/Unit		174,122	179,346	229,308
Units Demand		117	103	117
Constr & Sales/Unit		137,927	133,099	236,009
Develop Current Phase?		YES	YES	NO
Planned Capacity Deployment		309	0	0
Expand Capacity this Phase?		NO	NO	NO
Additional Capacity		0	0	0
Total Capacity Added		309	0	0
Units Sold		117	103	89
Sales Revenue		20,375,572	18,512,808	20,352,771
Total Constr & Sales Costs		42,619,551	0	0
Net Cash Flow		-22,243,979	18,512,808	20,352,771
PV of Cash Flow		-20,596,277	15,871,749	16,156,686
NPV (exclu land)	11,432,158			

Summary Preliminary Results

Question	Prelim. answer	Remarks
Is it possible to develop and test a quantitative performance-based validation method?	Yes	 Done 26 groups, 71 participants Extracted successfully flexible design recommendations from ideation reports Evaluated using quantitative model
Does design procedure improve performance vs. benchmark?	Yes	 Statistically significant mean difference between treatments, observed for all 3 criteria (∆complete ideas, ∆good ideas, ∆absolute ENPV) Prompting mechanism seems more effective than lecturing

	Expt 1 (E-I-)	Expt 2 (E-I+)	Expt 3 (E+I-)	Expt 4 (E+I+)
Expt 1 (E-I-)	0	1.75** (0.64)	0.75* (0.30)	2.25** (0.76)
Expt 2 (E-I+)		0	-1.00* (0.55)	0.50 (0.68)
Expt 3 (E+I-)			0	1.50* (0.72)
Expt 4 (E+I+)				0

* p < 0.05; ** p < 0.01 MIT ESD

	Expt 1 (E-I-)	Expt 2 (E-I+)	Expt 3 (E+I-)	Expt 4 (E+I+)
Expt 1 (E-I-)	0	1.35** (0.48)	0.75** (0.30)	1.88** (0.63)
Expt 2 (E-I+)		0	-0.60* (0.30)	0.53 (0.55)
Expt 3 (E+I-)			0	1.13* (0.60)
Expt 4 (E+I+)				0

* p < 0.05; ** p < 0.01 MIT ESD

(millions)	Expt 1 (E-I-)	Expt 2 (E-I+)	Expt 3 (E+I-)	Expt 4 (E+I+)
Expt 1 (E-I-)	0	2.33** (0.90)	2.47** (0.95)	2.86** (1.07)
Expt 2 (E-I+)		0	0.14 (0.99)	0.54 (1.08)
Expt 3 (E+I-)			0	0.40 (1.09)
Expt 4 (E+I+)				0

* p < 0.05; ** p < 0.01 MIT ESD

How Did ESD.77/16.888 Do?

- □ 6 teams participated in exp'ts 1 and 4
 - Experiment 1: 3 control groups (E-I-)
 - Experiment 4: 3 treatment groups (E+I+)
- Average scores compared to SDM/CRE students?
 - Compare ∆Complete ideas, ∆Good ideas, ∆Absolute ENPV for:
 - □ Experiment 1 (5 SDM/CRE control teams, 8 total)
 - Experiment 4 (5 SDM/CRE treatment teams, 8 total)

Best team overall?

Mean Differences: <a>\Delta Complete Ideas

No significant difference for both control and treatment groups

	Control SDM (E-I-)	Treatment SDM (E+I+)
Control	0.40	2.20*
ESD.77 (E-I-)	(0.34)	(1.17)
Treatment	-2.60**	-0.80
ESD.77 (E+I+)	(1.09)	(0.94)

* p < 0.05; ** p < 0.01

Mean Differences: △Good Ideas

No significant difference for both control and treatment groups

	Control SDM (E-I-)	Treatment SDM (E+I+)
Control	0.40	1.80* (0.90)
	(0.54)	(0:50)
Treatment	-2.27**	-0.86
ESD.77 (E+I+)	(1.02)	(0.82)

* p < 0.05; ** p < 0.01

No significant difference for both control and treatment groups

(millions)	Control SDM (E-I-)	Treatment SDM (E+I+)
Control	0.66	2.52*
L3D.77 (L-I-)	(0.45)	(1.50)
Treatment	-3.87**	-2.01
ESD.77 (E+I+)	(1.75)	(1.56)

* p < 0.05; ** p < 0.01

Delft University of Technology

Best Team?

- \square Benchmark design: ENPV = \$9.3M
- Team 4-7 identified 4 good and complete flexibility ideas
 - Abandon phase temporarily if cost goes up dramatically: ENPV = \$11.0M
 - Expand capacity next phase if demand > planned capacity: ENPV = \$11.3M
 - Reduce capacity next phase if demand < planned capacity: ENPV = \$12.0M
 - Switch next phase if profit condos > profit apts (and viceversa): ENPV = \$15.4M
- □ Absolute ENPV attained: \$15.7M (congratulations!)

Some Observations

- Design for uncertainty and flexibility is not an immediate "reflex"
 - Lots of value may be left on table
- Once guided, people can successfully think about flexibility; nothing magical
- Lecturing may not be sufficient to generate good complete flexibility ideas; may need a more "Socratic" ideation mechanism like prompting
- Lecturing seems to provide fewer, but as valuable ideas as with prompting mechanism; counter to typical brainstorming thinking "the more ideas the better"

Discussion

□ Surprised by results?

□ Implications for engineering education?

- "Deterministic" vs. "probabilistic" approaches to design?
- Socratic" prompting vs. lecture-based teaching?
- What does "optimal design" really mean?

Thoughts about testing design procedures in "experimental" setting?

□ How does flexibility apply to your term project?

ESD.77 / 16.888 Multidisciplinary System Design Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.