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TodayToday’’s Topics
s Topics

• Convergence Rates 
– Steepest Descent 
– Conjugate Gradient 
– Quasi-Newton


– Newton 


• Scaling 
• Approximation Methods 

– Quadratic Response Surface 
– Kriging  

• More on trust regions 
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Quadratic Functions


•	 The analysis to be presented only 
applies to quadratic functions: 

f (x) = 
1 xTQx + cT x
2 

•	 It assumes the line-search is exact: 
xk +1 = xk −αk Dk ∇f (xk ) 

αk = arg min f (xk −αk Dk ∇f ( )xk )α 

•	 It also provides only a worst case upper 
bound, but is generally good in practice. 



Steepest Descent


• f (x) = 
1 xTQx + cT x
2 

• Exact line search solution: 
∇f (xk )T ∇f (xk )αk = T
f ( )  ( ) ( )H x ∇f x
∇ xk k k 

• Convergence rate: 
2 

⎛ λmax − λmin ⎟
⎞

2 

or f (  )  ≤ ⎜
⎛ λmax λmin −1⎞⎟⎟ f ( )xk( )  x ≤ ⎜ f ( ) x 1
f k +1 ⎜

⎝ λmax + λmin 
⎟
⎠ 

xk k + ⎜
⎝ λmax λmin +1⎠


• Where 0≤λ1, λ2,…, λn-1, λn are 
eigenvalues of Q 
– λ1=λmin, and λn=λmax 



Conjugate Gradient 

• f (x) = 
1 xTQx + cT x
2 

• Where 0≤λ1, λ2,…, λn-1, λn are eigenvalues of
Q 

2 Tx − x * ≡ (x − x *) A(x − x *)• A 

• Convergence rate: 
2 

22 ≤ ⎜⎜
⎛ λn−k − λ1 

⎟⎟
⎞ 

xk +1 − x * x0 − x * 
QQ 

⎝ λn−k + λ1 ⎠ 
• Less tight bound: 

k 

≤ 2 
⎛
⎜ λ λ1 −1⎞⎟nxk +1 − x * x0 − x * 

QQ ⎜
⎝ λ λ1 +1⎟⎠n 

• Maximum number of iterations? 



Quasi-Newton (Broyden Class)

f (x) = 

1 xTQx + cT x• 2 
•	 Where 0≤λ1, λ2,…, λn-1, λn are eigenvalues of Q 

2	 Tx −	x * ≡ (x − x *) A(x − x *)• A 

•	 Convergence rate: 
2 

22 ≤	⎜⎜
⎛ λn−k − λ1 

⎟⎟
⎞ 

xk +1 − x * x0	− x * 
Q
Q 

⎝ λn−k + λ1 ⎠

•	 Less tight bound: 

k
⎛	 λ λ1 −1⎞⎟nxk +1 − x * x0 − x * 

QQ 
≤	2⎜

⎜
⎝ λ λ1 + 1⎟⎠n 

•	 Note for the Broyden class: 
–	 If the objective function is quadratic, 
–	 the initial Hessian estimate is identity, 
–	 and the line-search is exact, 

•	 Then the iterates are the same as the conjugate gradient 
method 



Newton’s Method


• Convergence bound?


f (xk +1 ) ≤ 0 ⋅ f (xk ) 



Why Scaling?


• f (x) = 
1 xTQx + cT x
2 

• For a method using: x k −α Dk ∇f (xk )k +1 = x k 

• Convergence rate: 
2 

⎛ λmax − λmin ⎟
⎞

2 

or f (  )  ≤ ⎜
⎛ λmax λmin −1⎞⎟ f ( )xf ( )  xk +1 ≤ ⎜⎜ λ + λ ⎟ f ( )xk 

xk +1 ⎜ λ λmin +1⎠⎟
k 

⎝ max min ⎠ ⎝ max 

• Where  λ1=λmin, and λn=λmax of the 
matrix: 

(Dk )1 2 Q(Dk )1 2 



Scaling-Practice


•	 min f (x) = 
1 xTQx + cT x 

x∈ℜn	 2 

⎡4 0 ⎤ ⎡ 6 ⎤ 
•	 Q = ⎢ ⎥, c = ⎢ ⎥

⎣0 100⎦ ⎣200⎦ 

•	 What is P, such that performing the 
optimization of f(x) using ~ x = Px requires the 
fewest number of iterations possible? 
–	How many iterations will be required for: 

• Newton  
• CG/Quasi-Newton 
• Steepest Descent 



Approximation Methods




Multifidelity Surrogates


• Definition: High-Fidelity 
–	 The best model of reality that is available and affordable, the analysis that is 

used to validate the design. 

• Definition: Low(er)-Fidelity 
–	 A method with unknown accuracy that estimates metrics of interest but requires 

lesser resources than the high-fidelity analysis. 

Reduced Physics	 Coarsened Mesh 

Hierarchical 
Models 

Reduced Order Model	 Regression Model


x2 x1 

f(x)	 f(x)Approximation 
Models 

f(x1) 
x 

x1 



Gradient-Based: Response Surface 

• Generate a response surface: 
xij 

i=dimension • j=sample point # 

• Sample at a collection of xi 
⎡1 x x x x x2 x2 ⎤11 21 11 21 12 21

⎢ 2 2 ⎥


X = ⎢
1 x12 x22 x12 x22 x12 x22 ⎥

⎢M M M M M M ⎥

⎢ 2 2 ⎥

⎣1 x1n x2n x1nx2n x1n x2n ⎦


β = [β1 β2 β3 β4 β5 β6 ]T 

F = [ f (x11, x21) f (x12 , x22 ) L f (x1n , x2n )]T 

• Solve for  β: Xβ = F 

• Or least-squares solution: X T Xβ = X T F 



Kriging Methods


• Recommendation: 
– DACE toolbox for Matlab: 

http://www2.imm.dtu.dk/~hbn/dace/ 
• Glutton’s for punishment: 

– Gaussian Processes for Machine Learning 
(Book-available online) 
http://www.gaussianprocess.org/gpml/


– Simplest version on pg 19. 

http://www2.imm.dtu.dk/~hbn/dace/
http://www.gaussianprocess.org/gpml/


Efficient Global Optimization 
•	 Started by Jones 1998 
• Based on probability theory 

–	 Assumes: 
T	 2f (x) ≈ β x + N (μ(x),σ (x)) 

•	 β T x , true behavior, regression 

2 
•	 N (μ(x),σ (x)), error from 

true behavior is normally 
distributed, with mean μ(x), and
variance σ2(x) 

•	 Estimate function values with a 
Kriging model (radial basis 
functions) 
– Predicts mean and variance 
– Probabilistic way to find optima 

•	 Evaluate function at “maximum 
expected improvement
location(s)” and update model 



Bayesian Model Calibration 

•	 fhigh (x) ≈ mk (x) = f low (x) + ε k (x) 

•	 Model the error between a 
high- and low-fidelity 
function 
–	 Bayesian approach 

•	 If the low-fidelity function 
is “good”: 
–	 Converges faster 
–	 Lower variance 

• Global calibration 
procedure 



Kriging Demo




Trust-Region Algorithm Summary 
• Solve the trust-region subproblem to determine a candidate step, sk: 

min mk (x k + s k ) 
s k ∈ℜ n 

s.t. ≤ Δ ks k 

• Evaluate fhigh at the candidate point and compute the ratio of actual to predicted 
reduction:	 fhigh (x k ) − fhigh (x k + sk )ρ k = 

mk (x k ) − mk (x k + sk ) 

⎧x k + sk ρ k > 0 
•	 Accept/reject iterate: x k +1 = ⎨ x otherwise⎩ k 

⎧min{2Δ , Δ } ρ ≥ 0.75 
• Update trust region size: Δ k +1 = ⎨

⎩ 0.5Δ 
k

k 

max 

ρ 
k

k < 0.25 

• Perform convergence check: ∇fhigh (x k ) ≤ ε1 
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Convergence Requirements


• First-order consistency: fhigh (x ) = mk (x )k k 

∇fhigh (x k ) = ∇mk (x k ) 

• Simplest trust-region model: 
mk (x k ) = fhigh (x k ) + ∇fhigh (x k )

T (x − x k ) + 
1 (x − x k )

T ∇ 2 fhigh (x k )(x − x k )2 

• For a general low-fidelity function: 
β = 

fhigh (x) a(x) = fhigh (x) − flow (x)
flow (x) 

βc = β (xk ) + ∇β (xk )
T (x − xk )

∇a(x) = ∇fhigh (x) −∇flow (x 
T 

) 
mk (x) = flow (x) + a(xk ) + ∇a(xk ) (x − xk )mk (x) = βc (x) flow (x) 



First-Order Consistent Trust Region


• Trust region approach 
[Alexandrov1997, 1999] 

• Requires: 
fhigh (x k ) = mk (x k ) 

∇fhigh (x k ) = ∇mk (x k ) 

• β-Correlation 
fhigh (x)

β = 
f low (x)


β c = β (x k ) + ∇β (x k )
T (x − x k )


mk (x) = β c (x) f low (x)


• Additive-Correction 
a(x) = fhigh (x) − f low (x) 

∇a(x) = ∇fhigh (x) − ∇f low (x) 
mk (x) = f low (x) + a(x k ) + ∇a(x k )

T (x 

fhigh (x k ) − fhigh (x k + sk )ρ k = 
mk (x k ) − mk (x k + sk ) 

− x k ) 



Trust Region Demo




Summary


• Scaling can be really important 
– Demonstrated theory 
– Surprising importance in practice 

• Approximation methods 
– Use only when necessary 
– Can save a lot of time 
– Do your best to choose the right one, exploit the 

aspects of your problem that you can. 
• Gradients available/Finite-difference reliable? 
• Constrained? 
• Physical behavior similar to a lower-fidelity model? 
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