

1

Multidisciplinary System Design Optimization (MSDO)

Multiobjective Optimization Recitation 9

Andrew March

© Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics

- Multiobjective Optimization
 - Gradient-based methods
 - Find directly
 - Weighted sum
 - NBI
 - AWS
 - Heuristic Methods
 - General comments
 - MOGA
 - Fitness functions
 - Selection algorithms

- Choose n value of objective 1
- For each value of objective 1

 Optimize objective 2
- Pros:
 - Fast
 - No convexity issues
- Cons:
 - Need to be able to fix an objective

- Choose a set of n λ 's \in [0,1]
- For each value of objective λ – Optimize f= λ *obj1+(1- λ)obj2
- Pros:
 - Fast
 - Can handle arbitrary number of objectives
- Cons:
 - Requires pareto front is convex

- Normal-Boundary Intersection
 - Das, I et al. 1998
- Perform single objective optimizations
- Choose n divisions between single objective optima
- Use goal programming along directions normal to current pareto front to find a feasible point.
- Pros:
 - Good distribution of points on pareto front
 - No issues of convexity
- Cons:
 - Computationally complex
 - Formulation is complex
 - Requires pareto filter

M lesd

- Adaptive Weighted-Sum
 - Kim, I. Y., de Weck O. L, 2005
- Perform normal weighted sum optimization
- Select areas for refinements
- Add constraints and adapt objective function ratios
- Pros:
 - All solutions pareto optimal
 - Finds solutions evenly distributed on pareto front
- Cons:
 - Computationally expensive

M lesd

General Comments

- You can be really creative with your fitness functions and selection
 - Can mitigate convexity issues
 - May not have to worry about scaling between objectives
- Can get even distribution on pareto front using a random process
 - May not have to force it, like AWS/NBI
 - High mutation rate (random variation) may be good:

Computational expense gets LARGE.

MOGA-1

- P(selection)≈% population that a member dominates
- Pseudo code:
- Create probability of selection vector
- While(next gen size<current size)
 - i=1
 - while(i≤current size & next gen size<desired size)</p>
 - x=rand(0,1)
 - If(x<P(selection))
 - Add member i to next gen
 - End if
 - i=i+1
 - End while
- End while

M lesd

MOGA-2

- Multiobjective roulette wheel selection
- P(selection)= (number of members dominated by member i)/ (sum of all dominations)
- Pseudo code:
- Create selection bins
 - Bin 1: $LB_1=0$, $UB_1=P(member1)$
 - Bin 2: $LB_2 = P(member 1), UB_2 = P(member 1) + P(member 2)...$
- For i=1:n
 - x=rand(0,1)
 - Select member i with $x \in bin i$
- End for

Demo

MOGA using roulette wheel selection (on stellar)

- Formulations presented cover the pareto front well if:
 - Domination is a good fitness function
 - GA actually works well on this problem
 - Randomness alone is sufficient for spread
- Can we force spread on the pareto front with a GA?

M esd

- Very commonly used Multiobjective GA
 - Deb, K. et al. 2002
- Pros:

No convexity issues, good spacing on pareto front

• Cons:

- COMPUTATIONAL EFFORT!

Fig. 20. Obtained nondominated solutions with Fonseca-Fleming's constraint-handling strategy with NSGA-II on the constrained problem TNK.

© 2002 IEEE. Courtesy of IEEE. Used with permission. Source: Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. "A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II." IEEE Transactions on Evolutionary Computation 6, no. 2 (2002): 182-97.

M esd

Summary

- You have many multiobjective optimization methods available to you.
 And most already available as toolboxes!
- A5
 - The pareto front only requires continuous variables
 - Can use many of the methods discussed in here

ESD.77 / 16.888 Multidisciplinary System Design Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.