Concentration at a point

 in space and time

$$
\text { concentration } c(x, t)=\lim _{V \rightarrow 0} \frac{\text { amount of substance in } V}{V}
$$

Flux at a point in space and time

amount of substance flowing
flux $\phi(x, t)=\lim _{\substack{A \rightarrow 0 \\ \Delta t \rightarrow 0}} \frac{\text { through test window } A \text { in } \Delta \mathrm{t}}{A \Delta t}$

Fick's First Law

$$
\phi(x, t)=-D \frac{\partial c(x, t)}{\partial x}
$$

Figure from Weiss, T. F. Cellular Biophysics, Vol. I. Cambridge, MA: MIT Press, 1996. Courtesy of MIT Press. Used with permission.

- number of solute particles << number of solvent particles
- motion of solute determined by collisions with solvent (ignore solute-solute interactions)
- focus on 1 solute particle, assume motions of others are statistically identical

Every τ seconds, solute particle gets hit by solvent particle.
In response, solute particle is equally likely to move $+l$ or $-l$.
$\tau=$ mean free time; $l=$ mean free path

Figures from Weiss, T. F. Cellular Biophysics, Vol. I. Cambridge, MA: MIT Press, 1996.
Courtesy of MIT Press. Used with permission.

Fick's First Law

$$
\phi(x, t)=-D \frac{\partial c(x, t)}{\partial x}
$$

Figure from Weiss, T. F. Cellular Biophysics, Vol. I. Cambridge, MA: MIT Press, 1996.
Courtesy of MIT Press. Used with permission.

How long till half the solute diffuses to $|x|>x_{1 / 2}$

$$
\begin{aligned}
& \frac{x_{1 / 2}}{\sqrt{2 D t}} \approx \frac{2}{3} \\
& \frac{2}{3} \sqrt{2 D t} \tilde{>} x_{1 / 2} \\
& \frac{4}{9} 2 D t \approx x_{1 / 2}^{2} \\
& t \approx \frac{x_{1 / 2}^{2}}{D} \equiv t_{1 / 2}
\end{aligned}
$$

$$
c(x, t)=\frac{n_{o}}{\sqrt{4 \pi D t}} e^{-x^{2} /(4 D t)}
$$

Importance of Scale

$$
\left.t_{1 / 2}=\frac{x_{1 / 2}^{2}}{D} \quad ; \mathrm{D}=10^{-5} \frac{\mathrm{~cm}^{2}}{\mathrm{~s}} \text { for small solutes (e.g., } \mathrm{Na}^{+}\right)
$$

	$x_{1 / 2}$	$t_{1 / 2}$
membrane sized	10 nm	$\frac{1}{10} \mu \mathrm{sec}$
cell sized	$10 \mu \mathrm{~m}$	$\frac{1}{10} \mathrm{sec}$
dime sized	10 mm	$10^{5} \mathrm{sec} \approx 1$ day

