Harvard-MIT Division of Health Sciences and Technology HST.410J: Projects in Microscale Engineering for the Life Sciences, Spring 2007 Course Directors: Prof. Dennis Freeman, Prof. Martha Gray, and Prof. Alexander Aranyosi

HST.410J/6.07J

Lecture 5 February 22, 2007

$$\phi(x,t) = -Drac{\partial c(x,t)}{\partial x}$$

Random Walk Model

- number of solute particles << number of solvent particles
- motion of solute determined by collisions with solvent (ignore solute-solute interactions)
- focus on 1 solute particle, assume motions of others are statistically identical

Every τ seconds, solute particle gets hit by solvent particle.

In response, solute particle is equally likely to move +l or -l.

 τ = mean free time; *l* = mean free path

Figures from Weiss, T. F. *Cellular Biophysics, Vol. I.* Cambridge, MA: MIT Press, 1996. Courtesy of MIT Press. Used with permission.

Fick's First Law

Figure from Weiss, T. F. *Cellular Biophysics, Vol. I.* Cambridge, MA: MIT Press, 1996. Courtesy of MIT Press. Used with permission.

How long till half the solute diffuses to $|x| > x_{1/2}$

Importance of Scale

$$t_{1/2} = \frac{x_{1/2}^2}{D}$$
; $D = 10^{-5} \frac{\text{cm}^2}{\text{s}}$ for small solutes (e.g., Na⁺)

<i>x</i> _{1/2}	<i>t</i> _{1/2}
10 nm	$\frac{1}{10}$ µsec
10 µm	$\frac{1}{10}$ sec
10 mm	10 ⁵ sec ≈ 1 day
	x _{1/2} 10 nm 10 μm 10 mm