MIT OpenCourseWare
http://ocw.mit.edu

HST.582J / 6.555J / 16.456J Biomedical Signal and Image Processing Spring 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem Set 5
 Due April 26, 2007

Problem 1

Decision Boundaries: Two-dimensional Gaussian Case

The optimal Bayesian decision rule can be written:

$$
\phi(x)=\left\{\begin{array}{lll}
1 & ; & \frac{p_{1}(x)}{p_{0}(x)}>\frac{P_{0}}{P_{1}} \\
0 & ; & \text { otherwise }
\end{array}\right.
$$

It is sometimes useful to express the decision in the log domain, or equivalently

$$
\phi(x)= \begin{cases}1 & ; \\ \ln \left(p_{1}(x)\right)-\ln \left(p_{0}(x)\right)>\ln \left(\frac{P_{0}}{P_{1}}\right) \\ 0 & ;\end{cases}
$$

The decision boundary is defined as the locus of points, x, where the ratios are equal, that is

$$
\ln \left(p_{1}(x)\right)-\ln \left(p_{0}(x)\right)=\ln \left(\frac{P_{0}}{P_{1}}\right)
$$

If $x=\left[x_{1}, x_{2}\right]$ is a two-dimensional Gaussian variable, its PDF is written:

$$
p_{i}(x)=\frac{1}{2 \pi\left|\Sigma_{i}\right|^{1 / 2}} \exp \left(-\frac{1}{2}\left(x-m_{i}\right)^{T} \Sigma_{i}^{-1}\left(x-m_{i}\right)\right)
$$

where m_{i}, Σ_{i} are the class-conditional means and covariances, respectively. Plugging this into the \log form of the decision boundary above yields:

$$
-\frac{1}{2}\left(x-m_{1}\right)^{T} \Sigma_{1}^{-1}\left(x-m_{1}\right)+\frac{1}{2}\left(x-m_{0}\right)^{T} \Sigma_{0}^{-1}\left(x-m_{0}\right)+\frac{1}{2} \ln \left(\frac{\left|\Sigma_{0}\right|}{\left|\Sigma_{1}\right|}\right)=\ln \left(\frac{P_{0}}{P_{1}}\right)
$$

Suggestion: You may want to do part (d) of this problem first as a way of checking your answers to the first three parts although it is not necessary to do so.
a) Suppose

$$
\begin{gathered}
P_{1}=P_{0}=\frac{1}{2} \quad x=\left[\begin{array}{l}
x_{1} \\
x_{0}
\end{array}\right] \quad m_{1}=\left[\begin{array}{r}
-1 \\
1
\end{array}\right] \quad m_{0}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
\Sigma_{1}=\Sigma_{0}=\left[\begin{array}{cc}
1 & \frac{9}{10} \\
\frac{9}{10} & 1
\end{array}\right] \quad \Sigma_{1}^{-1}=\Sigma_{0}^{-1}=\left[\begin{array}{cc}
\frac{100}{19} & \frac{-90}{19} \\
\frac{-90}{19} & \frac{100}{19}
\end{array}\right] \quad\left|\Sigma_{1}\right|=\left|\Sigma_{0}\right|=\frac{19}{100}
\end{gathered}
$$

express the decision boundary in the form $x_{2}=f\left(x_{1}\right)$.

Cite as: Julie Greenberg, Bertrand Delgutte, William (Sandy) Wells, John Fisher, and Gari Clifford. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signal and Image Processing, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
b) If we keep all values from part (a), but set

$$
\frac{P_{0}}{P_{1}}=\exp \left(-\frac{1}{2}\right)
$$

how does the decision boundary change in terms of its relationship to m_{1} and m_{0} ? Express the decision boundary in the form $x_{2}=f\left(x_{1}\right)$ using the new value of the ratio of P_{0} to P_{1} and the means and covariances from part (a).
c) Suppose now that

$$
\Sigma_{1}=\Sigma_{0}=\left[\begin{array}{ll}
1 & r \\
r & 1
\end{array}\right]
$$

where $|r|<1$ (which is simply a constraint to ensure Σ_{i} is a valid covariance matrix) keeping all other relevant terms from part (a). How does this change the decision boundary as compared to the result of part (a)?
d) Now let

$$
\Sigma_{0}=\left[\begin{array}{rr}
1 & \frac{-9}{10} \\
\frac{-9}{10} & 1
\end{array}\right] \quad \Sigma_{0}^{-1}=\left[\begin{array}{rr}
\frac{100}{19} & \frac{90}{19} \\
\frac{90}{19} & \frac{100}{19}
\end{array}\right] \quad\left|\Sigma_{0}\right|=\frac{19}{100}
$$

setting all other parameters, except P_{1} and P_{0}, the same as in part (a). Use matlab contour function to plot the decision boundary as a function of the ratio of prior probabilities of each class for the values $P_{0} / P_{1}=[1 / 4,1 / 2,1,2,4]$. Here is some of the code you will need (where "function" is the left side of the decision boundary equation, $\left.\ln \left(p_{1}(x)\right)-\ln \left(p_{0}(x)\right)\right)$:

```
[x1,x2] = meshgrid(-4:0.1:4,-4:0.1:4);
d = function(x1,x2);
[c,h] = contour(x1,x2,d,log([1/4,1/2,1,2,4]));
clabel(c,h);
```


Problem 2

Suggestion: read the entire question, the answer can be stated in one sentence with no calculations.

Suppose you have a 3-dimensional measurement vector $x=\left[x_{1}, x_{2}, x_{3}\right]$ for a binary classification problem where $0<P_{1}<1$ (i.e. it is strictly greater then 0 and less then 1). Recall that the class-conditional marginal distribution of x_{1}, x_{2} is

$$
\begin{aligned}
p_{i}\left(x_{1}, x_{2}\right) & =\int p_{i}\left(x_{1}, x_{2}, x_{3}\right) d x_{3} \\
& =\int p_{i}\left(x_{1}, x_{2} \mid x_{3}\right) p_{i}\left(x_{3}\right) d x_{3}
\end{aligned}
$$

and that the unconditioned marginal density of any single measurement is

$$
p\left(x_{k}\right)=\sum_{i=0}^{1} P_{i} p_{i}\left(x_{k}\right)
$$

where $k=1,2$, or 3 .
Now consider 2 different decision functions. The first $\phi\left(x_{1}, x_{2}, x_{3}\right)$ is the optimal classifier using the full measurement vector $\left[x_{1}, x_{2}, x_{3}\right]$, while the second $\varphi\left(x_{1}, x_{2}\right)$ is the optimal classifier using only $\left[x_{1}, x_{2}\right]$. In general the probability of error using $\phi\left(x_{1}, x_{2}, x_{3}\right)$ will be lower then when using $\varphi\left(x_{1}, x_{2}\right)$ (i.e. when we ignore the third measurement). State a condition under which both classifiers will achieve the same probability of error.

