Nature of Medical Data

6.872/HST950 Lecture# 2

Outline

- · Recall context of current medical practice
- History of medical record keeping
- Organization of medical records
- Computerized medical records
 - Why
 - Key issues
- Failures and successes
- · Current approaches

Implications of Health Care Organization for Informatics

- · Money determines much
 - Medicine spends 1-2% on IT, vs. 6-7% for business overall, vs. 10-12% for banking
 - "Bottom line" rules, therefore emphasis on
 - Billing
 - · Cost control
 - · Quality control, especially if demonstrable cost savings
 - Retention and satisfaction (maybe)
 - Management by accountants

Why Keep Records?

- · Basis for historical record
- Communication among providers
- Anticipate future health problems
- · Record standard preventive measures
- · Identify deviations from the expected
- Legal record

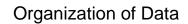
...)

Genes (SNPs,

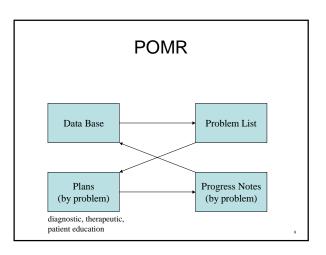
pedigrees, ...)

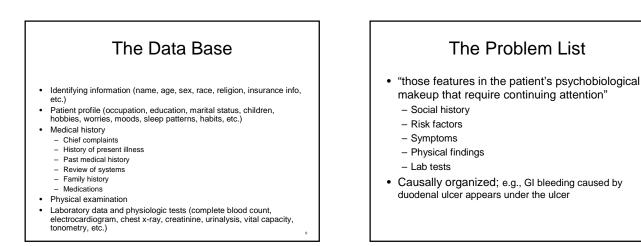
expression arrays,

Basis for clinical research


Who Keeps Records?

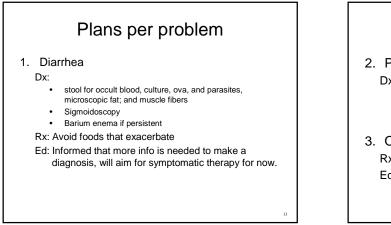
- Doctor
- Nurse
- · Office staff, admissions
- radiologist • pharmacist
- patient
- Administrator
- physical therapist
- lab personnel


Forms of Clinical Data Numerical Measurements Coded (?) discrete data Lab data - Family history Bedside measurements - Patient's medical history - Current complaint Home instrumentation · Symptoms (patient) Recorded signals (e.g.,


- · Signs (doc)
- ECG, EEG, EMG) - Physical examination Images (X-ray, MRI, CAT, Ultrasound, Pathology, - Medications
 - Narrative text
 - Doctor's, nurse's notes - Discharge summaries
 - Referring letters

Harvard-MIT Division of Health Sciences and Technology HST.950J: Medical Computing Peter Szolovits, PhD

- Doctor's journal (traditional)
- Time order of collection, per patient (Mayo)
- Source of data
- Problem-Oriented Medical Record (POMR) (L. Weed, 1969)
 - Notes organized by problems
 - SOAP: subjective, objective, assessment, plans



No	Active	Date	Inactive	Date
1	Hypertension	1953		
2	Recurrent bronchitis	1958		
3	Penicillin allergy	1958		
4			S/P pyelonephritis	1960
5	Gallstones	Oct 1972	→Cholecystectom	Mar
6	Arthralgias	Mar 1973	У>#9	1973
7	Pleurisy	Mar 1973	→#9	1978
8	Proteinuria	Apr 1973	→#9	1973
9	SLE	June		1973
10	Unemployment	1873		
		1973		

Problem-Related Plans

- Diagnostic: lab tests, radiology studies, consultations, continued observations, ...
- Therapeutic: medications, diet, psychotherapy, surgery, ...
- Patient education: instruction in self-care, about goals of therapy, prognosis, ...

Plans per problem (cont.)

- 2. Pyuria
 - Dx:
 - BUN
 - Repeat urinalysis
 - Urine culture
- 3. Obesity
 - Rx: 1500 kcal diet, Weight Watchers
 - Ed: Dangers of obesity cited. Goal: 170 lbs.

Progress Notes

- Subjective: interval history, adherence to program
- Objective: physical findings, reports of lab, x-ray, other tests
- Assessment: Appraisal of progress, interpretation of new findings, etc.
- Plan: Dx, Rx, Ed.

Example SOAP Note

#3 RHD with mitral stenosis

- S: 2 flight dyspnea, mild fatigue. No orthopnea, hemoptysis, ankle edema. Child has strep throat.
- O: BP 120/70. P 78 regular Neck veins normal, lungs clear. Grade iii diastolic rumble, wide opening snap, P₂ slightly ↑
 A: Stable. Catheterization still not indicated. Risk of stree throat
- P: Dx: Cardiac fluoroscopy
- Rx: Continue chlorothiazide and penicillin V 250mg b.i.d.—2 weeks
- Ed: Reinstructed about antibiotic coverage for tooth extractions.
 - sched. for next month. (Will contact oral surgeon.)

POMR characteristics

- Augment with data flow sheets
- Importance of clinical judgment
- Benefits:
 - Communication among team members, explicitness
 - Education and audit
 - Clinical research

POMR evidence

- · Difficult adoption
- Some duplication
- · Some doctors liked it
- Paper-based POMR slow, computerbased maybe faster
- Demand-oriented MR: by time, by source, by problem, etc. Dynamic arrangement.

Mayo experience

- · Paper records, mostly
- Pneumatic tube delivery, therefore limited size
- Formal procedures for reaping and organizing records at discharge
- Comprehensive index

The Computer-based Patient Record

- IOM Study: Dick, R. S. and Steen, E. B., Eds. (1991). *The Computer-Based Patient Record: An Essential Technology for Health Care*. Washington, D.C., National Academy Press.
- Made strong case for CPR
- Recommended CPRI (Institute), but it never caught
 on
- Today's standards grow more out of communication standards: HL7 (labs) and DICOM (digital images)

Paper record: Strengths

- · Familiar; low training time
- · Portable to point of care
- No downtime
- · Flexibility; easy to record subjective data
- Browsing and scanning

 Find information by unanticipated characteristics (e.g., Dr. Jones' handwriting)

Paper record: Weaknesses

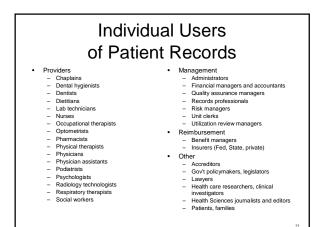
- Content: missing, illegible, inaccurate
 - E.g., one hospital study: 11% of tests were repeats to replace lost information
 - Too thick (1.5 lbs avg.)
 - Fail to capture rationale
 - Incomprehensible to patients and families

Sample paper record defects

- 75% of face sheets had no discharge disposition, 48% no principal Dx
- Agreement between encounter (witnessed) and record: 29% med hx, 66% Rx, 71% info re current illness, 72% tests, 73% impression/Dx, 92% chief complaint
- 20.8% of Medicare discharges coded incorrectly (DRG inflation)

More paper record defects

- Unavailable at up to 30% of patient visits
 Two clinic visits in a day
 - Two clinic visits in a day
 - Docs keep records in their office
 - Failure to deliver
 - Misfiled in file room
- Discontinuity across institutions


 In/outpatient records separate

- Xerox PARC analysis of office work
 - Sociologists, Anthropologists, Engineers - Much of work is
 - · communication,
 - · assignment of responsibilities,
 - · problem solving

Medicine is an Information Industry

- 35-39% of hospital operating costs due to professional and patient communications
- Physicians spend 38%, nurses 50% of their time charting
- Exponential growth of medical knowledge ٠ and literature

Institutional Users of Patient Record

Secondary Uses of Patient Record

Research

_

Industry

Develop new products

Assess technology

Study patient outcomes

- Identify populations at risk

record systems

- Plan marketing strategy

- Conduct R&D

- Assess cost-effectiveness of

Conduct clinical research

Study effectiveness and cost-effectiveness of care

Develop registries and databases

- Healthcare Delivery Alliances, association systems of providers iations. networks.
 - Ambulatory surgery centers Donor banks (blood, tissue, organs)
 - HMO's Home care agencies Hospices
- Hospitals
- Nursing homes PPO's

Education

Regulation

Policy

experience

- Evidence in litigation

Allocate resources

Conduct strategic planning
 Monitor public health

- Physician offices, group practices Psychiatric facilities Public Health Departments
- Substance abuse programs
- Management and Review
 Medicare peer review organizations
 Quality assurance companies

- Document health care professional

- Foster postmarketing surveillance

- Assess compliance with standards

Accredit professionals and hospitals

- Compare health care organizations

Prepare conferences and presentations
 Teach students

- Risk management companies Utilization review/management comp.
- Business Health coalitions Employers Insurers Research

Reimbursement

- Disease registries _
- Health data organizations Health care technology developers and manufacturers
- Research Centers
- Education Allied health professional schools, medical, nursing, public health schools
- Accreditation
 - Accreditation organizations Inst. licensure agencies Prof. Licensure agencies
- Policymaking

 Fed, State, Local gov't agencies

Primary Uses of Patient Record Patient care management Document case mix Analyze severity of illness Formulate practice guidelines Manage risk Characterize use of services Basis for utilization review Patient care delivery (Patient) - Document services received Constitute proof of identity - Self-manage care Verify billing Perform quality assurance Patient care support Patient care delivery (Provider) – Foster continuity of care Allocate resources Analyze trends and develop forecasts Assess workload Communicate between departments - Describe diseases and causes

- Support decision making about Dx and Rx
- Assess and manage risk
- Facilitate care via Clin. Practice Guidelines
- Document patient risk factors
- Assess and document patient expectations and satisfaction
- Generate care plans Determine preventive advice Remind clinicians Support nursing care

- Billing and reimbursement
 Document services for payment
- Document services for pa
 Bill for services
 Submit insurance claims
- Adjudicate insurance claims Determine disabilities (workmen's comp) Manage & report costs Perform actuarial analysis

User Requirements

- Record Content
 - Uniform core data elements
 - Standardized coding systems and formats
 - Common data dictionary
 - Information on outcomes of care and functional status
- Record Format
 - "Front-page" problem list Ability to "flip through" the record
 - Integrated among disciplines and sites of care
 - System Performance
 - Rapid retrieval - 24/7
 - Available @ convenient
 - places
 - Easy data input

User Requirements (cont.)

- Linkages
 - To other info systems (e.g., radiology, lab) Transferability of information
 - among specialties and sites - With relevant literature
 - Other registries and institutional databases
 - To records of other family members
 - E-billing
 - Training and Implementation
 - Minimal training required - Graduated implementations
- Intelligence Decision support
- Clinician reminders "Alarm" systems, customized _
- Reporting "Derived documents", e.g.,
- "Derived documents", e.g., insurance forms
 Easily customized output, UI
 Standard clinical reports, e.g., discharge summary
 Custom and *ad hoc* reports
 Trend reports and graphics
- Control and Access
 - Easy patient access
 Safeguards of confidentiality

Why is this hard?

- · Characterize edema:
 - Where?
 - When?
 - How often?
 - Temporal variation?
 - Severity
 - Symmetry
 - What other
- characteristics? • Uncertainties in all of the above
- · Thousand diseases,
 - syndromes, clinical states · Few thousand symptoms,
 - signs, observables · Few thousand specific lab
- tests
- · Thousands of meds, variations, combinations, routes, dosage schedules,

33

• ??? Treatments