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Topics


• Validation of biomedical models 
• Data-splitting 
• Resampling 

– Cross-validation 
– Jackknife 
– Bootstrap 



Generalization Problems 
• Different population characteristics 

– Descriptive statistics on populations help determine discrepancies 
• Overfitting management 

– Regression: shrinkage (keep coefficients small) 
– Neural networks: weight decay (keep weights small) 

– Regression: variable selection 
– Neural networks: weight elimination 
– Classification trees: pruning 
– Association rules: rule elimination 

– Neural networks: early stopping 

– General: penalty for adding parameters 



Types of validation 

• External 
– Different data sets for building model 

(including tuning parameters) and testing 
– Can be achieved with data splitting of same 

sample (random or chronological) or finding a 
new sample 

• Internal 
– Resampling 



Data Splitting


• Training set is used to build the model 
• Test set left aside for evaluation purposes 

•	 Training set also known as construction set, which
can contain a subset to estimate initial parameters
and another to tune them (hold-out set) 

•	 Rationale: If data are abundant, then there is no 
need to “recycle” cases 

•	 This is the most accepted form of validation in
medicine! 



Resampling


•	 When sample is small (relative to the 
number of parameters) one cannot afford to 
“loose” cases to the test set 

•	 Cases are used both to build and to test the 
models 

•	 There will be some “optimism” in the 
performance of the model 

• Types: cross-validation and bootstrap 



Cross-validation 

• Several training and test set pairs are created 
•	 Results are pooled from all test sets to estimate 

performance of the “full” model (the one built 
using all cases) 

• Each case is used once in evaluation 
Types 
• “Leave-n-out” 
• Jackknife (“Leave-1-out”) 
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Bootstrap for Validation 

• Difference with cross-validation 
– Each case can be used more than once in the 

evaluation 

• Bootstrap is not just used for validation 
•	 It can be used to estimate other quantities 

such as confidence intervals, median, etc. 



Bootstrap Motivation


•	 Sometimes it is not possible to collect many 
samples from a population 

•	 Sometimes it is not correct to assume a 
certain distribution for the population 

•	 Goal: Assess sampling variation and use the 
measurement to assess population 



Bootstrap


• Efron (Stanford biostats) late 80’s 
– “Pulling oneself up by one’s bootstraps” 

• Nonparametric approach to statistical inference 
•	 Uses computation instead of traditional 

distributional assumptions and asymptotic results 
•	 Can be used to estimate non-parametrically 

standard errors, confidence intervals, and other 
statistics 



Bootstrap


•	 General idea is to reuse cases in the sample 
to artificially create samples (from the 
sample). 

•	 Then measure properties of a statistic in the 
artificially created (“bootstrap”) samples 



Example


•	 Adapted from Fox (1997) “Applied 
Regression Analysis” 

•	 Goal: Estimate mean difference between 
Male and Female finding X 

• Four pairs of observations are available: 



Observ. Male Female Differ. Y 

1 24 18 6 

2 14 17 -3 

3 40 35 5 

4 44 41 3 



Mean Difference 

• Sample mean Y is (6-3+5+3)/4 = 2.75 
• If Y were normally distributed, 95% CI 

σ µ = Y ±1.96 
n 

• But we do not know σ 



Estimates


• Estimate of σ is S = ∑
(
( 
n

Yi 

−
− 
1 

Y 

)
)2 

• Estimate of standard error is SÊ (Y )= 
n 

S 

•	 Assuming population is normally 
distributed, we can use t-distribution as 

S µ = Y ± tn−1,0.025 n 



Confidence Interval

S µ = Y ± tn−1,0.025 n 

µ = 2.75 ± 4.30 (2.015) = 2.75 ± 8.66 

-5.91 < µ < 11.41 



Sample with Replacement 
•	 Use distribution Y* of bootstrap samples to estimate 

distribution Y in population 

Sample Y1 * Y2 * Y3 * Y4 * Y * 

1 6 6 6 6 6.00 

2 6 6 6 -3 3.75 

3 6 6 6 5 5.75 

.. 

100 -3 5 6 3 2.75 

101 -3 -3 -3 -3 -3 

… 

255 -3 3 3 5 3.5 

256 3 3 3 3 3.00 



Sampling with replacement 

•	 Expected fraction of data points that will make it 
into a bootstrap sample is 

1 – e-1 = 0.632 

P(chosen) = 1/n; P(not chosen) = 1 – 1/n 
P(not chosen n times) = (1 – 1/n)n 

If n is large, this approaches e-1 = 0.368 



Calculating the CI


•	 Mean of 256 bootstrap means is 2.75, but SE is 
nn 2 

SE *(Y*) = ∑b=1 
(Yb 

* − Y )
= 1.745 nn 

(Other estimate for SE was 2.015) 

• One can assume normality and use new SE 
•	 For 95% CI, one can look up sorted table and find 

2.5th and 97.5th percentiles directly 



Procedure


•	 1. Specify data-collection scheme that results in 
observed sample 
Collect(population) -> sample 

•	 2. Use sample as if it were population (with 
replacement) 
Collect(sample) -> bootstrap sample1 

bootstrap sample 2 
etc… 



Cont.


•	 3. For each bootstrap sample, calculate the 
estimate you are looking for 

•	 4. Use the distribution of the bootstrap 
estimates to estimate the properties of the 
sample 



Bootstrapping Regression


Observed estimate is usually the coefficient(s) 
- (at least) 2 ways of doing this 
•	 Resample observations (usual) and re-

regress (X will vary) 
•	 Resample residuals (X are fixed, Y*=Y+E* 

is new dependent variable, re-regress X 
fixed) 



The population is to the sample

as 


the sample is to the bootstrap samples


In practice (as opposed to previous example), not all 
bootstrap samples are selected, as nn may be high 

Usually the size of the bootstrap sample is the same 
as the size of the original sample 



Bootstrap Validation


• Simple: 
–	 build models on bootstrap samples (training sets) and

evaluate them in the full sample (test sets) 
– Average the test set indices 

• Enhanced: 
–	 Use bootstrap to calculate optimism (index from

bootstrap sample (training set) minus the index from
the original sample (test set)) 

–	 Subtract optimism from the index of the model built on
the original sample to come up with a bias-corrected 
index 



Simple Bootstrap Example


1. One model with original sample is built 
2.	 100 bootstrap samples serve as training 

sets for 100 logistic regression models 
3.	 The area under the ROC curve (c-index) is 

calculated for each of the 100 models and 
averaged (e.g., 0.75). This is assumed to 
be the c-index for the model built with 
original samples (from step 1) 



Enhanced Bootstrap Example 

1.	 One model with original sample is built. Calculate C-
index for training set. (e.g., 0.80) 

2.	 100 bootstrap samples serve as training sets for 100
logistic regression models 

3.	 For each model in step 2, calculate the difference
between c-index on bootstrap sample (training set) and
original sample (test set). 

4.	 Average all differences from step 3. This is the
“optimism”. (e.g., 0.20) 

5.	 Subtract “optimism” from c-index obtained in step 1.
This is the bias-corrected (or overfitting-corrected) c-
index. (e.g., 0.6) 



0.632 method


•	 Bias-corrected estimate does not use average 
“optimism” 

• Error is 
[0.368 α + 0.632 x ε], where ε is weighted 
average of errors on observations omitted from 
bootstrap samples; α is training set error. 

•	 So more weight on test observations (previously 
unseen) 



0.632 example


• Apparent accuracy is 0.80 
•	 Weighted average of error in non-used 

samples is 0.30 
• Error is 
• [0.368 (0.2)] x [0.632(0.30)] = 0.2632 



0.632 example


• Breiman et al (1984) example 
– Assume no relationship between independent 

and dependent variables 
– Binary outcome 
– One-nearest neighbor will have error = 0 
– 0.632 bootstrap will give an error of .632 x 0.5 

= 0.316 
– What should have been the true error? 



0.632+


•	 Consider the error if independent and 
dependent variables were not associated 

γ is the no-information error rate, estimated 
by evaluating the prediction model on all 
possible combinations of targets yi and 
predictors xi 



0.632+


• Relative overfitting rate is 
•	 R = (ε – α)/(γ – α), where ε is weighted 

average of errors on observations omitted 
from bootstrap samples; α is the training 
data error 

• Error0.632+ = (1 – w) α + w ε, where 
• w = 0.632/(1 – 0.368 R) 



0.632+


•	 For the same example, one-nearest neighbor 
model in data for which independent and 
dependent variables were not associated 

• w = R = 1, since 
• R = (ε – α)/(γ – α) = (0.5 − 0)/(0.5 − 0) 
• Error0.632+ = γ = 0.5 



Bootstrap for predictive models


•	 Used in other classification methods (neural 
networks, classification trees, etc.) 

•	 Usually useful when sample size is small 
and no distribution assumptions can be 
made 

• Same principles apply 



Summary


•	 Always more convincing to test performance in 
previously unseen cases 

•	 Several ways of doing this: split sample, cross-
validation, bootstrap 

• General indices not very informative 
•	 Combination of indices describing discrimination and 

calibration are more informative 
•	 Hard to conclude that one system is better than another one 

in terms of classification performance alone: explanation, 
variable selection, and acceptability by clinicians are key 


