
Optimization and Complexity

Decision Systems Group

Brigham and Women’s Hospital,

Harvard Medical School

HST 951 Spring 2003
Harvard-MIT Division of Health Sciences and Technology

Aim

• Give you an intuition of what is meant
by
– Optimization
– P and NP problems
– NP-completeness
– NP-hardness

• Enable you to recognize formals of
complexity theory, and its usefulness

HST 951 Spring 2003

Overview

• Motivating example
• Formal definition of a problem
• Algorithm and problem complexity
• Problem reductions

–NP-completeness
–NP-hardness

• Glimpse of approximation
algorithms and their design

HST 951 Spring 2003

What is optimization?

• Requires a measure of optimality
–Usually modeled using a

mathematical function

• Finding the solution that yields the
globally best value of our measure

HST 951 Spring 2003

What is the problem?

• Nike: Just do it
• Not so simple:

–Even problems that are simple to
formally describe can be intractable

–Approximation is necessary
–Complexity theory is a tool we use to

describe and recognize (intractable)
problems

HST 951 Spring 2003

Example: Variable Selection

•	 Data tables T and V have n predictor columns and one
outcome column. We use machine learning method L to
produce predictive model L(T) from data table T. We
can evaluate L(T) on V, producing a measure E(L(T),V).

• We want to find a maximal number of predictor columns
in T to delete, producing T’, such that

E(L(T’),V) = E(L(T), V)

•	 There is no known method of solving this problem
optimally (e.g, NP-hardness of determining a minimal
set of variables that maintains discernibility in training
data, aka the rough set reduct finding problem).

HST 951 Spring 2003

Search for Optimal

Variable Selection

• The space of all possible

selections is huge
• 43 variables, 243 -1 possibilities

of selecting a non-empty subset,
each being a potential solution

• one potential solution pr. post-it
gives a stack of post-its reaching
more than half way to the moon

HST 951 Spring 2003

Search for Optimal

Variable Selection

• Search space
– discrete
– structure that lends

itself to stepwise
search (add a new or
take away one old)

– optimal point is not
known, nor is optimal
evaluation value

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

∅

HST 951 Spring 2003

Popular Stepwise Search

Strategies

• Hill climbing:
– select starting

point and always
step in the
direction of most
positive change
in value

HST 951 Spring 2003

Popular Stepwise Search

• Simulated
annealing:
– select starting point

and select next
stepping direction
stochastically with
increasing bias
towards more
positive change

Strategies

HST 951 Spring 2003

Problems

• Exhaustive search: generally intractable
because of the size of the search space
(exponential in the size of variables)

• Stepwise: no consideration of synergy
effects
– Variables a and b considered in isolation

from each other are excluded, but their
combination would not be

HST 951 Spring 2003

– population of solutions
– Stochastic selection of

parents with bias towards
“fitter” individuals

– “mating” and “mutation”
operations on parents

– Merging of old population
with offspring

– Repeat above until no
improvement in
population

Genetic Algorithm Search

HST 951 Spring 2003

GA Optimization

Animation

HST 951 Spring 2003

Addressing the Synergy

Problem of Stepwise Search

• Genetic algorithm search
– Non-stepwise, non-exhaustive
– Pros:

• Potentially finds synergy effects
• Does not a priori exclude any parts of the search

space

– Cons:
• Computationally expensive
• Difficult to analyze, no comprehensive theory for

parameter specification

HST 951 Spring 2003

Variable Selection for Logistic

Regression using GA

• Data:
–43 predictor variables
–Outcome: MI or not MI (1 or 0)
–Training (T, 335 cases) and Holdout

(H, 165 cases) from Sheffield,
England

–External validation (V, 1253 cases)
from Edinburgh, Scotland

HST 951 Spring 2003

GA Variable Selection for

LR: Generational Progress

Fitness value evolution

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80 100 120 140 160

Generation

Fi
tn

es
s

Min

Max

Mean

HST 951 Spring 2003

GA Variable Selection for

LR: Results

• Table presenting results on validation
set E, including SAS built-in variable
selection methods (removal/entry level
0.05)

P < 0.05

Selection Size ROC AUC
Genetic 6 0.95
none 43 0.92
Backward 11 0.92
Forward 13 0.91
Stepwise 12 0.91

HST 951 Spring 2003

Problem Example

• Boolean formula f (with variables)
– Is there a truth assignment such that f is

true?
– Does this given truth assignment make f

true?
– Find a satisfying truth assignment for f
– Find a satisfying truth assignment for f with

the minimum number of variables set to
true

HST 951 Spring 2003

Problem Formally Defined

• A problem P is a relation from a
set I of instances to a set S of
solutions: P ⊆ I × S
–Recognition: is (x,y) ∈ P ?
–Construction: for x find y such that

(x,y) ∈ P
–Optimization: for x find the best y

such that (x,y) ∈ P

HST 951 Spring 2003

Solving Problems

• Problems are solved by an
algorithm, a finite description of
steps, that compute a result given
an instance of the problem.

HST 951 Spring 2003

Algorithm Cost

• Algorithm cost is measured by
– How many operations (steps) it takes to

solve the problem (time complexity)
– How much storage space the algorithm

requires (space complexity)

on a particular machine type as a
function of input length (e.g., the
number of bits needed to store the

problem instance).

HST 951 Spring 2003

O-Notation

• O-notation describes an upper
bound on a function

• let g,f: N → N
f(n) is O(g(n))

if there exists constants a,b,m
such that for all n=m

f(n) = a * g(n) + b

HST 951 Spring 2003

O-Notation Examples

f(n) = 9999999999999999
is O(1)

f(n) = 1000000n + 100000000
is O(n)

f(n) = 3n2 + 2n – 3
is O(n2)

(Exercise: convince yourselves of this please)

HST 951 Spring 2003

Worst Case Analysis

• Let t(x) be the running time of
algorithm A on input x

• Let T(n) = max{t(x) | |x| = n}
– I.e., T(n) is the worst running time on

inputs not longer than n.

• A is of time complexity O(g(n)) if
T(n) is O(g(n))

HST 951 Spring 2003

Problem Complexity

• A problem P has a time complexity
O(g(n)) if there exists an algorithm
that has time complexity O(g(n))

• Space complexity is defined
analogously

HST 951 Spring 2003

Decision Problems

• A decision problem is a problem P
where the set of Instances can be
partitioned into YP of positive instances
and NP of non-positive instances, and
the problem is to determine whether a
particular instance is a positive instance

• Example: satisifiability of Boolean CNF
formulae, does a satisfying truth
assignment exist for a given instance?

HST 951 Spring 2003

Two Complexity Classes for

Decision Problems

• P – all decision problems of time
complexity O(nk), 0 = k =∞

• NP – all decision problems for
which there exists a non-
deterministic algorithm with time
complexity O(nk), 0 = k =∞

HST 951 Spring 2003

What is a non-deterministic

algorithm?

• Algorithm: finite description
(program) of steps.

• Non-deterministic algorithm: an
algorithm with “guess” steps
allowed.

HST 951 Spring 2003

Computation Tree

• Each guess step
results in a
“branching point”
in a computation
tree

• Example:
satisfying a
Boolean formula
with 3 variables

HST 951 Spring 2003

1 0

0 1

1

a

b

0

Y N Y Y Y N Y N

((~a ∧ b) ∨ ~c)

c

Non-deterministic algorithm

time complexity

• A ND algorithm A solves the
decision problem P in time
complexity t(n) if, for any instance
x with |x| = n, A halts for any
possible guess sequence and x∈YP

if and only if there exists at least
one sequence which results in YES
in time at most t(n)

HST 951 Spring 2003

P and NP

• We have that
–P ⊆ NP

• If there are problems in NP that
are not in P is still an open
problem, but it is strongly believed
that this is the case.

HST 951 Spring 2003

Problem Reduction

• A reduction from problem P1 to
problem P2 presents a method for
solving P1 using an algorithm for
P2.
–P2 is then intuitively at least as

difficult as P1

HST 951 Spring 2003

Problem Reduction
x

•	 Problem P1 is reducible to P2
if there exists an algorithm R P1(x)
R which solves P1 by
querying an oracle for P2. In x’ P2(x’)
this case, R is said to be a
reduction from P1 to P2, and
we write P1 = P2

Oracle

•	 If R is of polynomial time
complexity we write P1 =p P2

HST 951 Spring 2003

NP-completeness

• A decision problem P is NP-complete if
– It is in NP, and
– For any other problem P’ in NP we have that P’ =p P,

•	 This means that any NP problem can be solved
in polynomial time if one finds a polynomial
time algorithm for NP-complete P

•	 There are problems in NP for which the best
known algorithms are exponential in time
usage, meaning that NP-completeness is a
sign of problem intractability

HST 951 Spring 2003

Optimization Problems

• Problem P is a quadruple (IP, SP, mP, gP)
– IP is the set of instances
– SP is a function that for an instance x returns the set

of feasible solutions SP(x)
– mP(x,y) is the positive integer measure of solution

quality of a feasible solution y of a given instance x
– gP is either min or max, specifying whether P is a

maximization or minimization problem

•	 The optimal value for mP for x over all
solutions is denoted mP(x). A solution y for
which mP(x,y) = mP(x) is called optimal and is
denoted y*(x).

HST 951 Spring 2003

Optimization Problem

Example

• Minimum hitting set problem
– I = { C | C ⊆ 2U}
–S = {H | H ∩ c ≠ ∅, c ∈ C }
–m(C,H) = |H|
–g = min

HST 951 Spring 2003

Complexity Class NPO

An optimization problem (I, S, m, g) is in NPO if

1.	 An element of I is recognizable as such in

polynomial time
2.	 Solutions of x are bounded in size by a

polynomial q(|x|), and are recognizable as
such in q(|x|) time

3. m is computable in polynomial time

Theorem: For an NPO problem, the decision
problem whether m(x) = K (g=min) or m(x)
= K (g=max) is in NP

HST 951 Spring 2003

Complexity Class PO

• An optimization problem P is said
to be in PO if it is in NPO and there
exists an algorithm that for each x
in I computes an element y*(x)
and its value m(x) in polynomial
time

HST 951 Spring 2003

NP-hardness

• NP-completeness is defined for
decision problems

• An optimization problem P is NP-
hard if we for every NP decision
problem P’ we have that P’ =p P

• Again, NP-hardness is a sign of
intractability

HST 951 Spring 2003

Approximation Algorithms

• An algorithm that for an NPO
problem P always returns a
feasible solution is called an
approximation algorithm for P

• Even if an NPO problem is
intractable it might not be difficult
to design a polynomial time
approximation algorithm

HST 951 Spring 2003

Approximate Solution Quality

•	 Any feasible solution is an approximate
solution, and is characterized by the distance
from its value to the optimal one.

•	 An approximation algorithm is characterized
by its complexity, and by the ratio of the
distance above to the optimum, and the
growth of this performance ratio with input
size

•	 An algorithm is a p-approximate algorithm if
the performance ratio is bounded by the
function p in input size

HST 951 Spring 2003

Some Design Techniques for

Approximation Algorithms

• Local search
– Given solution, search for better “neighbor” solution

• Linear programming
– Formulate problem as a linear program

• Dynamic Programming
– Construct solution from optimal solutions to sub-

problems
• Randomized algorithms

– Algorithms that include random choices
• Heuristics

– Exploratory, possibly learning strategies that offer no
guarantees

HST 951 Spring 2003

Thank you

That’s all folks

HST 951 Spring 2003

