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Aim 

• Give you an intuition of what is meant 
by 
– Optimization 
– P and NP problems 
– NP-completeness 
– NP-hardness 

• Enable you to recognize formals of 
complexity theory, and its usefulness 
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Overview


• Motivating example 
• Formal definition of a problem 
• Algorithm and problem complexity 
• Problem reductions 

–NP-completeness 
–NP-hardness 

• Glimpse of approximation 
algorithms and their design 
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What is optimization?


• Requires a measure of optimality 
–Usually modeled using a 

mathematical function 

• Finding the solution that yields the 
globally best value of our measure 
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What is the problem?


• Nike: Just do it 
• Not so simple: 

–Even problems that are simple to 
formally describe can be intractable 

–Approximation is necessary 
–Complexity theory is a tool we use to 

describe and recognize (intractable) 
problems 
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Example: Variable Selection


•	 Data tables T and V have n predictor columns and one 
outcome column. We use machine learning method L to
produce predictive model L(T) from data table T. We
can evaluate L(T) on V, producing a measure E(L(T),V). 

• We want to find a maximal number of predictor columns
in T to delete, producing T’, such that 

E(L(T’),V) = E(L(T), V) 

•	 There is no known method of solving this problem 
optimally (e.g, NP-hardness of determining a minimal 
set of variables that maintains discernibility in training 
data, aka the rough set reduct finding problem). 
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Search for Optimal 

Variable Selection

• The space of all possible 

selections is huge 
• 43 variables, 243 -1 possibilities 

of selecting a non-empty subset, 
each being a potential solution 

• one potential solution pr. post-it 
gives a stack of post-its reaching 
more than half way to the moon 
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Search for Optimal 

Variable Selection


• Search space 
– discrete 
– structure that lends 

itself to stepwise 
search (add a new or 
take away one old) 

– optimal point is not 
known, nor is optimal 
evaluation value 

{a,b,c}


{a,b} {a,c} {b,c} 

{a} {b} {c} 

∅ 
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Popular Stepwise Search 

Strategies


• Hill climbing: 
– select starting 

point and always 
step in the 
direction of most 
positive change 
in value 
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Popular Stepwise Search 


• Simulated 
annealing: 
– select starting point 

and select next 
stepping direction 
stochastically with 
increasing bias 
towards more 
positive change 

Strategies 
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Problems


• Exhaustive search: generally intractable 
because of the size of the search space 
(exponential in the size of variables) 

• Stepwise: no consideration of synergy 
effects 
– Variables a and b considered in isolation 

from each other are excluded, but their 
combination would not be 
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– population of solutions 
– Stochastic selection of 

parents with bias towards 
“fitter” individuals 

– “mating” and “mutation” 
operations on parents 

– Merging of old population 
with offspring 

– Repeat above until no 
improvement in 
population 

Genetic Algorithm Search 
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GA Optimization 

Animation
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Addressing the Synergy 

Problem of Stepwise Search


• Genetic algorithm search 
– Non-stepwise, non-exhaustive 
– Pros: 

• Potentially finds synergy effects 
• Does not a priori exclude any parts of the search 

space 

– Cons: 
• Computationally expensive 
• Difficult to analyze, no comprehensive theory for 

parameter specification 
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Variable Selection for Logistic 

Regression using GA


• Data: 
–43 predictor variables 
–Outcome: MI or not MI (1 or 0) 
–Training (T, 335 cases) and Holdout 

(H, 165 cases) from Sheffield, 
England 

–External validation (V, 1253 cases) 
from Edinburgh, Scotland 
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GA Variable Selection for 

LR: Generational Progress


Fitness value evolution 
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GA Variable Selection for 

LR: Results


• Table presenting results on validation 
set E, including SAS built-in variable 
selection methods (removal/entry level 
0.05) 

P < 0.05 

Selection Size ROC AUC 
Genetic 6 0.95 
none 43 0.92 
Backward 11 0.92 
Forward 13 0.91 
Stepwise 12 0.91 
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Problem Example


• Boolean formula f (with variables) 
– Is there a truth assignment such that f is 

true? 
– Does this given truth assignment make f 

true? 
– Find a satisfying truth assignment for f 
– Find a satisfying truth assignment for f with 

the minimum number of variables set to 
true 

HST 951 Spring 2003 



Problem Formally Defined


• A problem P is a relation from a 
set I of instances to a set S of 
solutions: P ⊆ I × S 
–Recognition: is (x,y) ∈ P ? 
–Construction: for x find y such that 

(x,y) ∈ P 
–Optimization: for x find the best y 

such that (x,y) ∈ P 
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Solving Problems


• Problems are solved by an 
algorithm, a finite description of 
steps, that compute a result given 
an instance of the problem. 

HST 951 Spring 2003 



Algorithm Cost 

• Algorithm cost is measured by 
– How many operations (steps) it takes to 

solve the problem (time complexity) 
– How much storage space the algorithm 

requires (space complexity) 

on a particular machine type as a 
function of input length (e.g., the 
number of bits needed to store the 

problem instance). 
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O-Notation 

• O-notation describes an upper 
bound on a function 

• let g,f: N → N 
f(n) is O(g(n)) 

if there exists constants a,b,m 
such that for all n=m 

f(n) = a * g(n) + b 
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O-Notation Examples 

f(n) = 9999999999999999 
is O(1) 

f(n) = 1000000n + 100000000 
is O(n) 

f(n) = 3n2 + 2n – 3 
is O(n2) 

(Exercise: convince yourselves of this please)
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Worst Case Analysis


• Let t(x) be the running time of 
algorithm A on input x 

• Let T(n) = max{t(x) | |x| = n} 
– I.e., T(n) is the worst running time on 

inputs not longer than n. 

• A is of time complexity O(g(n)) if 
T(n) is O(g(n)) 
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Problem Complexity


• A problem P has a time complexity 
O(g(n)) if there exists an algorithm 
that has time complexity O(g(n)) 

• Space complexity is defined 
analogously 
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Decision Problems


• A decision problem is a problem P 
where the set of Instances can be 
partitioned into YP of positive instances 
and NP of non-positive instances, and 
the problem is to determine whether a 
particular instance is a positive instance 

• Example: satisifiability of Boolean CNF 
formulae, does a satisfying truth 
assignment exist for a given instance? 
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Two Complexity Classes for 

Decision Problems


• P – all decision problems of time 
complexity O(nk), 0 = k =∞ 

• NP – all decision problems for 
which there exists a non-
deterministic algorithm with time 
complexity O(nk), 0 = k =∞ 
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What is a non-deterministic 

algorithm?


• Algorithm: finite description 
(program) of steps. 

• Non-deterministic algorithm: an 
algorithm with “guess” steps 
allowed. 
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Computation Tree


• Each guess step 
results in a 
“branching point” 
in a computation 
tree 

• Example: 
satisfying a 
Boolean formula 
with 3 variables 
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Non-deterministic algorithm 

time complexity


• A ND algorithm A solves the 
decision problem P in time 
complexity t(n) if, for any instance 
x with |x| = n, A halts for any 
possible guess sequence and x∈YP 

if and only if there exists at least 
one sequence which results in YES 
in time at most t(n) 
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P and NP


• We have that 
–P ⊆ NP 

• If there are problems in NP that 
are not in P is still an open 
problem, but it is strongly believed 
that this is the case. 
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Problem Reduction 

• A reduction from problem P1 to 
problem P2 presents a method for 
solving P1 using an algorithm for 
P2. 
–P2 is then intuitively at least as 

difficult as P1 
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Problem Reduction 
x 

•	 Problem P1 is reducible to P2 
if there exists an algorithm R P1(x)
R which solves P1 by 
querying an oracle for P2. In x’ P2(x’)
this case, R is said to be a 
reduction from P1 to P2, and 
we write P1 = P2 

Oracle 

•	 If R is of polynomial time 
complexity we write P1 =p P2 
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NP-completeness


• A decision problem P is NP-complete if 
– It is in NP, and 
– For any other problem P’ in NP we have that P’ =p P, 

•	 This means that any NP problem can be solved 
in polynomial time if one finds a polynomial 
time algorithm for NP-complete P 

•	 There are problems in NP for which the best 
known algorithms are exponential in time 
usage, meaning that NP-completeness is a 
sign of problem intractability 
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Optimization Problems


• Problem P is a quadruple (IP, SP, mP, gP) 
– IP is the set of instances 
– SP is a function that for an instance x returns the set 

of feasible solutions SP(x) 
– mP(x,y) is the positive integer measure of solution 

quality of a feasible solution y of a given instance x 
– gP is either min or max, specifying whether P is a 

maximization or minimization problem 

•	 The optimal value for mP for x over all 
solutions is denoted mP(x). A solution y for 
which mP(x,y) = mP(x) is called optimal and is 
denoted y*(x). 
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Optimization Problem 

Example


• Minimum hitting set problem 
– I = { C | C ⊆ 2U} 
–S = {H | H ∩ c ≠ ∅, c ∈ C } 
–m(C,H) = |H| 
–g = min 
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Complexity Class NPO


An optimization problem (I, S, m, g) is in NPO if

1.	 An element of I is recognizable as such in

polynomial time 
2.	 Solutions of x are bounded in size by a

polynomial q(|x|), and are recognizable as
such in q(|x|) time 

3. m is computable in polynomial time 

Theorem: For an NPO problem, the decision 
problem whether m(x) = K (g=min) or m(x) 
= K (g=max) is in NP 
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Complexity Class PO


• An optimization problem P is said 
to be in PO if it is in NPO and there 
exists an algorithm that for each x 
in I computes an element y*(x) 
and its value m(x) in polynomial 
time 
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NP-hardness 

• NP-completeness is defined for 
decision problems 

• An optimization problem P is NP-
hard if we for every NP decision 
problem P’ we have that P’ =p P 

• Again, NP-hardness is a sign of 
intractability 
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Approximation Algorithms


• An algorithm that for an NPO 
problem P always returns a 
feasible solution is called an 
approximation algorithm for P 

• Even if an NPO problem is 
intractable it might not be difficult 
to design a polynomial time 
approximation algorithm 
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Approximate Solution Quality


•	 Any feasible solution is an approximate 
solution, and is characterized by the distance 
from its value to the optimal one. 

•	 An approximation algorithm is characterized 
by its complexity, and by the ratio of the 
distance above to the optimum, and the 
growth of this performance ratio with input 
size 

•	 An algorithm is a p-approximate algorithm if 
the performance ratio is bounded by the 
function p in input size 
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Some Design Techniques for 

Approximation Algorithms


• Local search 
– Given solution, search for better “neighbor” solution 

• Linear programming 
– Formulate problem as a linear program 

• Dynamic Programming 
– Construct solution from optimal solutions to sub-

problems 
• Randomized algorithms 

– Algorithms that include random choices 
• Heuristics 

– Exploratory, possibly learning strategies that offer no 
guarantees 
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Thank you


That’s all folks
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