Fuzzy and Rough Sets Part I

Decision Systems Group Brigham and Women's Hospital, Harvard Medical School

Aim

- Present aspects of fuzzy and rough sets.
- Enable you to start reading technical literature in the field of AI, particularly in the field of fuzzy and rough sets.
- Necessitates exposure to some formal concepts.

Overview Part I

- Types of uncertainty
- Sets, relations, functions, propositional logic, propositions over sets
= Basis for propositional rule based systems

Overview Part II

- Fuzzy sets
- Fuzzy logic
- Rough sets
- A method for mining rough/fuzzy rules
- Uncertainty revisited

Uncertainty

- What is uncertainty?
- The state of being uncertain. (Webster).
- What does uncertain mean?
- Not certain to occur.
- Not reliable.
- Not known beyond doubt.
- Not clearly identified or defined.
- Not constant.
(Webster).

Uncertainty

- Ambiguity: existence of one-to-many relations
- Conflict: distinguishable alternatives
- Non-specificity: indistinguishable alternatives
- Fuzziness:
- Lack of distinction between a set and it's complement (Yager 1979)
- Vagueness: nonspecific knowledge about lack of distinction

Uncertainty

- Klir/Yuan/Rocha:

Uncertainty

Vagueness
Non-specificity
Conflict

Model

- What is a model?
- A mathematical representation (idealization) of some process (Smets 1994)
- Model of uncertainty:
- A mathematical representation of uncertainty

Sets: Definition

- A set is a collection of elements
- If i is a member of a set S, we write $i \in S$, if not we write $\mathrm{i} \notin \mathrm{S}$
- $\mathrm{S}=\{1,2,3,4\}=\{4,1,3,2\}-$ explicit list
- $S=\{i \in \mathbf{Z} \mid 1 \leq i \leq 4\}$ - defining condition
- Usually: Uppercase letters denote sets, lowercase letters denote elements in sets, and functions.

Sets: Operations

- $A=\{1,2\}, B=\{2,3\}$ - sets of elements union:

$$
A \cup B=\{1,2,3\}=\{i \mid i \in A \text { or } i \in B\}
$$

I ntersection:

$$
\begin{aligned}
& A \cap B=\{2\}=\{i \mid i \in A \text { and } i \in B\} \\
& \text { Difference: }
\end{aligned}
$$

$$
A-B=\{1\}=\{i \mid i \in A \text { but not } i \in B\}
$$

Sets: Subsets

- A set B is a subset of A if and only if all elements in B are also in A. This is denoted $B \subseteq A$.
- $\{1,2\} \subseteq\{2,1,4\}$

Sets: Subsets

- The empty set \varnothing, containing nothing, is a subset of all sets.
- Also, note that $A \subseteq A$ for any A.

Sets: Cardinality

- For sets with a finite number of elements, the cardinality of a set is synonymous with the number of elements in the set.
- $|\{1,2,3\}|=3$
- $|\varnothing|=0$

Cartesian Product: Set of Tuples

- (a, b) is called an ordered pair or tuple
- The cartesian product $A \times B$ of sets A and B, is the set of all ordered pairs where the first element comes from A and the second comes from B.
$A \times B=\{(a, b) \mid a \in A$ and $b \in B\}$
- $\{1,2\} \times\{3,2\}=$
$\{(1,3),(1,2),(2,3),(2,2)\}$

Relations: Subsets of Cartesian Products

- A relation R from A to B is a subset of $A \times B$
- $\mathrm{R} \subseteq \mathrm{A} \times \mathrm{B}$
- $\{(1,2),(2,3)\}$ is a relation from $\{1,2\}$ to $\{3,2\}$
- $\{(1,3)\}$ is also a relation from $\{1,2\}$ to $\{3,2\}$

Binary Relations

- A relation from a set A to itself is called a binary relation, i.e., $R \subseteq A \times A$ is a binary relation.
- Properties of a binary relation R :
$-(a, a) \in R$ for all $a \in A$,
- R is reflexive
- $(a, b) \in R$ implies $(b, a) \in R$,
- R is symmetric
$-(a, b),(b, c) \in R$ implies $(a, c) \in R$,
- R is transitive

Relations: Equivalence and Partitions

- A binary relation on A is an equivalence relation if it is reflexive, symmetric and transitive.
- Let $R(a)=\{b \mid(a, b) \in R\}$

Relations: Equivalence and Partitions

- If R is an equivalence relation, then for $a, b \in R$, either
- $R(a)=R(b)$ or
$-R(a) \cap R(b)=\varnothing$.
$-R(a)$ is called the equivalence class of a under R
- The different equivalence classes under R of the elements of A form what is called a partition of A

Functions: Single Valued Relations

- $R \subseteq\{a, b, c\} \times\{1,2\}$
- $R(a)=\{1\}$
- $R(b)=\{2\}$
- $R(c)=\varnothing$
- $|R(x)| \leq 1$ for all x, R is single valued
-Is R' on the right single valued?

Functions: Partial and

 Total- A single valued relation is called a partial function.
- A partial function from A to B is total if $|f(a)|=1$ for all $a \in A$. It is then said to be defined for all elements of A. Usually a total function is just called a function.

Functions: Partial and

 Total- If a function f is from A to B, A is called the domain of f, while B is called the co-domain of f.
- A function f with domain A and codomain B is often written

$$
\mathrm{f}: \mathrm{A} \rightarrow \mathrm{~B} .
$$

Functions: Extensions

- A partial function g such that $f \subseteq g$ is called an extension of f.

$$
f=\{(a, 1),(b, 2)\}
$$

$$
g=\{(a, 1),(b, 2),(c, 2)\}
$$

Characteristic functions: Sets

- A function $\mathrm{f}: \mathrm{A} \rightarrow\{0,1\}$ is called a characteristic function of

$$
S=\{a \in A \mid f(a)=1\} .
$$

- $\mathrm{S} \subseteq \mathrm{A}$

Characteristic functions: Sets

$$
\begin{aligned}
& f=\{(a, 0),(b, 1),(c, 1)\} \\
& S=?
\end{aligned}
$$

Propositional Logic

- Proposition: statement that is either true or false.
- "This statement is false." (Eubulides)
- If pain and ST-elevation, then MI. Patient is in pain and has ST-elevation. What can we say about the patient?

Propositional language

- Language:
- An infinite set of variables

$$
V=\{a, b, \ldots\}
$$

- A set of symbols $\{\sim, \mathrm{v},()$,
- Any string of elements from the above two sets is an expression
- An expression is a legal (well formed) formula (wff) or it is not

Propositional Syntax

- wff formation rules:
- A variable alone is a wff
- If α is a wff, so is $\sim \alpha$
- If α and β are wff, so is ($\alpha \vee \beta$)
- Is (a v ~~~b) a wff?
- Is a v b a wff?

Propositional Operators

Truth functional

- Negation (not): ~ $\sim \alpha$

- Disjunction (or): v $(\alpha \vee \beta)$

Semantics

- A setting $\mathrm{s}: \mathrm{V} \rightarrow\{0,1\}$ assigning each variable either 0 or 1 , denoting true or false respectively
- An Interpretation I_{v} : wff $\rightarrow\{0,1\}$ used to compute the truth value of a wff

Semantics

- Variables

$$
I(a)=s(a)
$$

- Composite wff:

$$
\begin{aligned}
& I(\sim \alpha)=\sim I(\alpha) \\
& I(\alpha \vee \beta)=I(\alpha) \vee I(\beta)
\end{aligned}
$$

Semantics Example

$$
\begin{aligned}
1(\sim(\sim a \vee \sim b)) & =\sim 1(\sim a \vee \sim b) \\
& =\sim(\sim 1(a) \vee \sim 1(b)) \\
& =\sim(\sim s(a) \vee \sim s(b))
\end{aligned}
$$

If we let $\mathrm{s}(\mathrm{a})=1, \mathrm{~s}(\mathrm{~b})=0$

$$
1(\sim(\sim a \vee \sim b))=\sim(\sim 1 \vee \sim 0)
$$

$$
=\sim(0 \vee 1)=\sim 1=0
$$

New Operator: And

- Conjunction (and): ^
$\left(\alpha^{\wedge} \beta\right)=\sim(\sim \alpha \vee \sim \beta)$

New Operator: Implication

- Implication (if...then): \rightarrow

$$
(\alpha \rightarrow \beta)=(\sim \alpha \vee \beta)
$$

\rightarrow	0	1
0	1	1
1	0	1

New Operator: Equivalence

- Equivalence: \leftrightarrow

$$
(\alpha \leftrightarrow \beta)=(\alpha \rightarrow \beta) \wedge(\beta \rightarrow \alpha)
$$

Semantics Of New Operators

- Conjunction:
$I\left(\alpha^{\wedge} \beta\right)=I(\alpha) \wedge I(\beta)$
- Implication:

$$
I(\alpha \rightarrow \beta)=\sim I(\alpha) \vee I(\beta)
$$

- Equivalence:

$$
I(\alpha \leftrightarrow \beta)=I(\alpha \rightarrow \beta) \wedge I(\beta \rightarrow \alpha)
$$

Propositional

Consequence: A Teaser

- $s=$ "Alf studies"
- $\mathrm{g}=$ "Alf gets good grades"
- $\mathrm{t}=$ "Alf has a good time"
- ($s \rightarrow \mathrm{~g}$)
$-(\sim s \rightarrow t)$
$-(\sim g \rightarrow \sim t)$
$(\sim s \vee g)^{\wedge}(\mathrm{s} \vee \mathrm{t}) \wedge(\mathrm{g} \vee \sim \mathrm{t})=\mathrm{g} \wedge(\mathrm{s} \vee \mathrm{t})$
At least Alf gets good grades.

Propositions Over a Set

- Propositions that describe properties of elements in a set
- Modeled by characteristic functions
- Example: even: $N \rightarrow\{0,1\}$ even $(x)=(x+1)$ modulo 2 even(2) $=1$ even(3) $=0$

Truth Sets

- Truth set of proposition over U $p: U \rightarrow\{0,1\}$
$T_{U}(p)=\{x \mid p(x)=1\}$
- Example $T_{N}($ even $)=\{2,4,6, \ldots\}$

Semantics

- Semantics are based on truth sets
$-I_{U}(p(x))=1$ if and only if x in $T_{U}(p)$
- Following previous definitions, we have that

$$
\begin{aligned}
& -T_{U}(\sim p)=U-T_{U}(p) \\
& -T_{U}(p \vee q)=T_{U}(p) \cup T_{U}(q) \\
& -T_{U}(p \wedge q)=T_{U}(p) \cap T_{U}(q)
\end{aligned}
$$

Semantics Example

- Two propositions over natural numbers
- even
- prime
$T_{N}\left(\right.$ even ${ }^{\wedge}$ prime $)=T_{N}($ even $) \cap T_{N}($ prime $)$

$$
=\{2\}
$$

$I_{N}\left(\operatorname{even}(x)^{\wedge} \operatorname{prime}(x)\right)=1$ if and only if $x=2$

Inference: Modus Ponens

- Modus Ponens (rule of detachment):

Ted is cold $\frac{\alpha \rightarrow \beta}{\beta} \quad \frac{\text { If Ted is cold, }}{\text { Ted shivers }}$ he shivers

An "implication-type rule application" mechanism

Next Time

- How to include uncertainty about set membership
- Extend this to logic
- A method for mining propositional rules

