## Fuzzy and Rough Sets Part II

Decision Systems Group Brigham and Women's Hospital, Harvard Medical School

## Overview

- Fuzzy sets
- Fuzzy logic and rules
- Rough sets and rules
- An example of a method for mining rough/fuzzy rules
- Uncertainty revisited


## Crisp Sets

- A set with a characteristic function is called crisp
- Crisp sets are used to formally characterize a concept, e.g., even numbers
- Crisp sets have clear cut boundaries, hence do not reflect uncertainty about membership


## Fuzzy Sets

- Zadeh (1965) introduced "Fuzzy Sets" where he replaced the characteristic function with membership
- $\chi_{s}: U \rightarrow\{0,1\}$ is replaced by
$\mathrm{m}_{\mathrm{S}}: \mathrm{U} \rightarrow[0,1]$
- Membership is a generalization of characteristic function and gives a "degree of membership"
- Successful applications in control theoretic settings (appliances, gearbox)


## Fuzzy Sets

- Example: Let S be the set of people of normal height
- Normality is clearly not a crisp concept


## Crisp Characterizations of

## Fuzzy Sets

- Support in U

Support $_{U}(S)=\left\{x \in U \mid m_{S}(x)>0\right\}$

- Containment
$A \subseteq B$ if and only if

$$
m_{A}(x) \leq m_{B}(x) \text { for all } x \in U
$$

- There are non-crisp versions of the above


## Fuzzy Set Operations

- Union

$$
m_{A \cup B}(x)=\max \left(m_{A}(x), m_{B}(x)\right)
$$

- Intersection

$$
m_{A \cap B}(x)=\min \left(m_{A}(x), m_{B}(x)\right)
$$

- Complementation
$m_{U-A}(x)=1-m_{A}(x)$
- Note that other definitions exist too


## Fuzzy Memberships Example



## Fuzzy Union Example



## Fuzzy Intersection Example



## Fuzzy Complementation Example



## Fuzzy Relations

- The fuzzy relation R between Sets $X$ and $Y$ is a fuzzy set in the Cartesian product $X \times Y$
- $m_{R}: X \times Y \rightarrow[0,1]$ gives the degree to which $x$ and $y$ are related to each other in R.


## Composition of Relations

- Two fuzzy relations $R$ in $X \times Y$ and $S$ in $Y \times Z$ can be composed into $R^{\circ} S$ in $X \times Z$ as

$$
m_{R \circ S}(x, z)=\max _{y \in Y}\left[\min \left[m_{R}(x, y), m_{S}(y, z)\right]\right]
$$

## Composition Example



## Probabilities of Fuzzy Events

- "Probability of cold weather tomorrow"
- $U=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, p$ is a probability density, $A$ is a fuzzy set (event) in U

$$
P(A)=\sum_{i=1}^{n} m_{A}\left(x_{i}\right) p\left(x_{i}\right)
$$

## Defuzzyfication

- Finding a single representative for a fuzzy set $A$ in $U=\left\{x_{i} \mid i\right.$ in $\left.\{1, . . n\}\right\}$
- Max: $x$ in $U$ such that $m_{A}(x)$ is maximal
- Center of gravity:

$$
\frac{\sum_{i=1}^{n} x_{i} m_{A}\left(x_{i}\right)}{\sum_{i=1}^{n} m_{A}\left(x_{i}\right)}
$$

## Alpha Cuts

- $A$ is a fuzzy set in $U$
- $A_{\alpha}=\left\{x \mid m_{A}(x) \geq \alpha\right\}$ is the $\alpha$-cut of A in U
- Strong $\alpha$-cut is
$A_{\alpha}=\left\{x \mid m_{A}(x)>\alpha\right\}$
- Alpha cuts are crisp sets


## Fuzzy Logic

- Different views
- Foundation for reasoning based on uncertain statements
- Foundation for reasoning based on uncertain statements where fuzzy set theoretic tools are used (original Zadeh)
- As a multivalued logic with operations chosen in a special way that has some fuzzy interpretation


## Fuzzy Logic

- Generalization of proposition over a set
- Let $\chi_{\mathrm{s}}: \mathrm{U} \rightarrow\{0,1\}$ denote the characteristic function of the set $S$
- Recall that in "crisp" logic $\mathrm{I}(\mathrm{p}(\mathrm{x}))=\mathrm{p}(\mathrm{x})=\chi_{\mathrm{T}(\mathrm{p})}(\mathrm{x})$ where $p$ is a proposition and $T(p)$ is the corresponding truth set


## Fuzzy Logic

- We extend the proposition

$$
p: U \rightarrow\{0,1\}
$$

to be a fuzzy membership

$$
p: U \rightarrow[0,1]
$$

- The fuzzy set associated with p corresponds to the truth set $T(p)$ and $p(x)$ is the degree of truth of $p$ for $x$
- We extend the interpretation of logical formulae analogously to the crisp case


## Fuzzy Logic Sematics

- Basic operations:

$$
\begin{aligned}
& -I(p(x))=p(x) \\
& -I(\alpha \vee \beta)=\max (I(\alpha), I(\beta)) \\
& -I(\alpha \wedge \beta)=\min (I(\alpha), I(\beta)) \\
& -I(\sim \alpha)=1-I(\alpha)
\end{aligned}
$$

## Fuzzy Logic Sematics

- Implication:
- Kleene-Dienes

$$
I(\alpha \rightarrow \beta)=\max (I(\sim \alpha), I(\beta))
$$

- Dubois and Prade (1992) analyze other definitions of Implications
- Zadeh

$$
I(\alpha \rightarrow \beta)=\max (I(\sim \alpha), \min (I(\alpha), I(\beta)))
$$

## Fuzzy Rules

- "If $x$ in $A$ then $y$ in $B$ " is a relation $R$ between $A$ and $B$
- Two model types
- Implicative: ( $x$ in $A \rightarrow y$ in $B$ ) is an upper bound
- Conjunctive: ( $x$ in $A \wedge y$ in $B$ ) is a lower bound
- Crisp motivation:

$$
\chi_{A}(x) \wedge \chi_{B}(y) \leq \chi_{R}(x, y) \leq\left(1-\chi_{A}(x)\right) \vee \chi_{B}(y)
$$

## Conjunctive Rule application

- $\mathrm{R}: \mathrm{U} \times \mathrm{U} \rightarrow[0,1]$ is a rule

If $p(x)$ then $q(y)$

- Using a generalized Modus Ponens $A^{\prime}$
$A \rightarrow B$
B'
we get that
$B^{\prime}=A^{\prime}{ }^{\circ} R$
$B^{\prime}(y)=\max _{x}\left[\min \left[A^{\prime}(x), R(x, y)\right]\right]$


## Rough Sets

- Pawlak 1982
- Approximation of sets using a collection of sets.
- Related to fuzzy sets (Zadeh 1965), in that both can be viewed as representations of uncertainty regarding set membership.


## Rough Set: Set Approximation



## Rough Set: Set Approximation



## Rough Set: Set Approximation



- Approximation of D by $\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\}$ :
- $\mathrm{C}_{1}$ definitely outside
- $\mathrm{C}_{3}$ definitely inside: lower approximation
$-\mathrm{C}_{2} \cup \mathrm{C}_{4}$ are boundary
- $\mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4}$ are upper approximation


## Rough Set: Set Approximation

- Given a collection of sets $C=\left\{C_{1}, C_{2}, C_{3}, \ldots\right\}$ and a set D, we define:
- Lower approximation of D by C ,

$$
D^{L}=\cup C_{i} \text { such that } C_{i} \cap D=C_{i}
$$

- Upper approximation of $D$ by C ,

$$
D^{U}=\cup C_{i} \text { such that } C_{i} \cap D \neq \varnothing
$$

- Boundary of D by C,

$$
D_{L}^{U}=D^{U}-D_{L}
$$

## Rough Set: Definition

- $A$ set $D$ is rough with respect to a collection of sets $C$ if it has a nonempty boundary when approximated by C. Otherwise it is crisp.


## Rough Set: Information System

- Universe U of elements, e.g., patients.
- Set A of features (attributes), functions $f$ from $U$ to some set of values $V_{f}$.
- (U,A) - information system

| Object no. | a | b | c | d |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 1 | 0 |
| 2 | 0 | 1 | 1 | 1 |
| 3 | 0 | 1 | 1 | 0 |
| 4 | 0 | 1 | 1 | 0 |
| 5 | 1 | 0 | 0 | 1 |
| 6 | 1 | 0 | 0 | 1 |
| 7 | 1 | 1 | 0 | 1 |
| 8 | 1 | 1 | 0 | 1 |
| 9 | 1 | 1 | 0 | 0 |

$$
\begin{aligned}
& U=\{1,2,3,4,5,6,7,8,9\} \\
& A=\{a, b, c, d\} \\
& V_{a}=V_{b}=V_{c}=V_{d}=\{0,1\}
\end{aligned}
$$

[^0]
## Rough Sets: Partition of U

- $E=\{(i, j) \in U \times U \mid a b c(i)=a b c(j)\}$, equivalence relation on $U$
- $E(1)=\{1\} \quad=C_{1}$
- $E(2)=E(3)=E(4)=\{2,3,4\}=C_{2}$
- $E(5)=E(6)=\{5,6\} \quad=C_{3}$
- $\mathrm{E}(7)=\mathrm{E}(8)=\mathrm{E}(9)=\{7,8,9\}=\mathrm{C}_{4}$

| Object no. | abc | d |
| :---: | :---: | :---: |
| 1 | $(0,0,1)$ | 0 |
| 2 | $(0,1,1)$ | 1 |
| 3 | $(0,1,1)$ | 0 |
| 4 | $(0,1,1)$ | 0 |
| 5 | $(1,0,0)$ | 1 |
| 6 | $(1,0,0)$ | 1 |
| 7 | $(1,1,0)$ | 1 |
| 8 | $(1,1,0)$ | 1 |
| 9 | $(1,1,0)$ | 0 |



## Rough Sets: Approximating D



$$
\begin{aligned}
D^{U} & =\{2,3,4,5,6,7,8,9\}=C_{2} \cup C_{3} \cup C_{4} \\
D_{L} & =\{5,6\}=C_{3} \\
D^{U}-D_{L} & =\{2,3,4,7,8,9\}=C_{2} \cup C_{4}
\end{aligned}
$$

## Rough Sets: Approximate membership $\delta$

$\delta(i)=\frac{|D \cap E(i)|}{|E(i)|}$

- $\delta(1)=0$
- $\delta(2)=\delta(3)=\delta(4)=1 / 3$
- $\delta(5)=\delta(6)=1$
- $\delta(7)=\delta(8)=\delta(9)=2 / 3$


## Rough Sets: Data Compression

Information: Partition given by equivalence. Find minimal sets of features that preserve information in table.

| Object no. | a | b | c | d |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 1 | 0 |
| 2 | 0 | 1 | 1 | 1 |
| 3 | 0 | 1 | 1 | 0 |
| 4 | 0 | 1 | 1 | 0 |
| 5 | 1 | 0 | 0 | 1 |
| 6 | 1 | 0 | 0 | 1 |
| 7 | 1 | 1 | 0 | 1 |
| 8 | 1 | 1 | 0 | 1 |
| 9 | 1 | 1 | 0 | 0 |


| Object no. | a | b | d |
| :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 |
| 2 | 0 | 1 | 1 |
| 3 | 0 | 1 | 0 |
| 4 | 0 | 1 | 0 |
| 5 | 1 | 0 | 1 |
| 6 | 1 | 0 | 1 |
| 7 | 1 | 1 | 1 |
| 8 | 1 | 1 | 1 |
| 9 | 1 | 1 | 0 |

[^1]
## Rough Sets: Discernibility Matrix

- $M_{A}=\left\{m_{i j}\right\}, A=\{a, b, c\}$
- $m_{i j}=\left\{a \in A \mid a(k) \neq a(I), k \in C_{i}, I \in C_{j}\right\}$

$M_{A}=$| $\{ \}$ | $\{b\}$ | $\{a, c\}$ | $\{a, b, c\}$ |
| :--- | :--- | :--- | :--- |
| $\{b b\}$ | $\{ \}$ | $\{a, b, c\}$ | $\{a, c\}$ |
| $\{a, c\}$ | $\{a, b, c\}$ | $\{ \}$, | $\{b\}$ |
| $a, b, c\}$ | $\{a, c\}$ | $\{b\}$ | $\}$ |


| Object no. | a | b | c |
| :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 1 |
| $2,3,4$ | 0 | 1 | 1 |
| 5,6 | 1 | 0 | 0 |
| $7,8,9$ | 1 | 1 | 0 |

$C=\{\{b\},\{a, c\}\{a, b, c\}\}-$ set of non-empty entries of $M_{A}$ Minimal sets that have non-empty intersection with all elements of C are $\{\mathrm{a}, \mathrm{b}\}$ and $\{\mathrm{b}, \mathrm{c}\}$ (Finding: Combinatorial) These are called reducts of ( $U, A$ )
A reduct is a minimal set of features that preserves the partition.

## Rough Sets: Extending $\delta$

- Problem: we only have the $\delta$ value for 4 of 8 possible input values. What is $\delta(1,1,1)$ ?
- By using compressed data that preserves the partition, we cover more of the feature space. All of it in this case. $\delta(1,1,1)=$ $\delta(1,1)=2 / 3$.

| abc | d |
| :---: | :---: |
| $(0,0,1)$ | 0 |
| $(0,1,1)$ | $1 / 3$ |
| $(1,0,0)$ | 1 |
| $(1,1,0)$ | $2 / 3$ |


| $a b$ | $d$ |
| :---: | :---: |
| $(0,0)$ | 0 |
| $(0,1)$ | $1 / 3$ |
| $(1,0)$ | 1 |
| $(1,1)$ | $2 / 3$ |

## Rough Sets: Extending $\delta$

- Problem: extension not unique (and can extend to different parts of feature space).
- $\delta(1,1,1)=\delta(1,1)=1 / 3$.
- Possible solution: generate several extensions and combine by voting. Generating all extensions is combinatorial.
- $\delta(1,1,1)=(2 / 3+1 / 3) / 2=1 / 2$

| abc | $d$ |
| :---: | :---: |
| $(0,0,1)$ | 0 |
| $(0,1,1)$ | $1 / 3$ |
| $(1,0,0)$ | 1 |
| $(1,1,0)$ | $2 / 3$ |


| $b c$ | $d$ |
| :---: | :---: |
| $(0,0)$ | 1 |
| $(0,1)$ | 0 |
| $(1,0)$ | $2 / 3$ |
| $(1,1)$ | $1 / 3$ |

## Rough Sets: Classification rules

| Object no. | a | b | c | d |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 1 | 0 |
| 2 | 0 | 1 | 1 | 1 |
| 3 | 0 | 1 | 1 | 0 |
| 4 | 0 | 1 | 1 | 0 |
| 5 | 1 | 0 | 0 | 1 |
| 6 | 1 | 0 | 0 | 1 |
| 7 | 1 | 1 | 0 | 1 |
| 8 | 1 | 1 | 0 | 1 |
| 9 | 1 | 1 | 0 | 0 |


| $a b$ | $d$ |
| :---: | :---: |
| $(0,0)$ | 0 |
| $(0,1)$ | $1 / 3$ |
| $(1,0)$ | 1 |
| $(1,1)$ | $2 / 3$ |

Rules with right hand side support numbers:
$a(0)$ AND $b(0)=>d(0)$
$a(0)$ AND $b(1)=>d(1)$ OR d(0)
$\mathrm{a}(1)$ AND $\mathrm{b}(0)=>\mathrm{d}(1)$
$a(1)$ AND $b(1)=>d(1)$ OR $d(0)$
$(1,2)$
(2)
$(2,1)$

## A Proposal for Mining Fuzzy Rules

- Recipe:

1. Create rough information system by fuzzy discretization of data
2. Compute rough decision rules
3. Interpret rules as fuzzy rules

## Fuzzy Discretization

- $A_{1}, A_{2}, \ldots, A_{n}$ are fuzzy sets in $U$
- disc: $U \rightarrow\{1,2, \ldots, n\}$ $\operatorname{disc}(x)=\left\{i \mid m_{A_{i}}(x)=\max \left\{m_{A_{i}}(x) \mid j \in\{1,2, \ldots, n\}\right\}\right.$
- disc selects the index of the fuzzy set that yields the maximal membership
- Information system: subject each attribute value to disc


## Fuzzy Rough Rules: Example

$$
\begin{aligned}
& \mathrm{A}_{1}(3.14)=0.6 \\
& \mathrm{~A}_{1}(0.1)=0.3 \\
& \mathrm{~A}_{2}(3.14)=0.5 \\
& \mathrm{~A}_{2}(0.1)=0.8
\end{aligned}
$$

| Object no. | $a$ | d |
| :---: | :---: | :---: |
| 1 | 3.14 | 0 |
| 2 | 0.1 | 1 |


| Object no. | a | d |
| :---: | :---: | :---: |
| 1 | 1 | 0 |
| 2 | 2 | 1 |

if A1 then $d=0$
if $A 2$ then $d=1$

## Uncertainty

- Fuzzy sets can be said to model inherent vagueness Bob is "tall" - vagueness in the meaning of "tall", not in Bob's height
- Rough sets can be said to model ambiguity due to lack of information


## And...

- Thank you for your attention


[^0]:    HST 951 Spring 2003

[^1]:    HST 951 Spring 2003

