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Overview 

• Fuzzy sets 
• Fuzzy logic and rules 
• Rough sets and rules 
• An example of a method for 

mining rough/fuzzy rules 
• Uncertainty revisited 
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Crisp Sets


• A set with a characteristic function 
is called crisp 

• Crisp sets are used to formally 
characterize a concept, e.g., even 
numbers 

• Crisp sets have clear cut 
boundaries, hence do not reflect 
uncertainty about membership 
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Fuzzy Sets


• Zadeh (1965) introduced “Fuzzy Sets”
where he replaced the characteristic
function with membership 

• c S: U fi {0,1} is replaced by 
mS : U fi [0,1] 

• Membership is a generalization of
characteristic function and gives a
“degree of membership” 

• Successful applications in control
theoretic settings (appliances, gearbox) 
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Fuzzy Sets 

• Example: Let S be the set of 
people of normal height 

• Normality is clearly not a crisp 
concept 

HST 951 Spring 2003 



Crisp Characterizations of 

Fuzzy Sets


• Support in U 
SupportU(S) = {x ˛ U | mS(x) > 0} 

• Containment 
A ˝ B if and only if 

mA(x) £ mB(x) for all x ˛ U 

• There are non-crisp versions of the 
above 
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Fuzzy Set Operations 

• Union 
mA¨B(x) = max(mA(x), mB(x)) 

• Intersection 
mA˙B(x) = min(mA(x), mB(x)) 

• Complementation 
mU-A(x) = 1 - mA(x) 

• Note that other definitions exist 
too 
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Fuzzy Memberships 

Example


mA(x) mB(x) 
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Fuzzy Union Example 

mA¨B (x) 

mA(x) mB(x) 
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Fuzzy Intersection 

Example


mA˙B(x) 

mA(x) mB(x) 
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Fuzzy Complementation 

Example


mU-A(x) 

mA(x) mU-A(x) 
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Fuzzy Relations 

• The fuzzy relation R between Sets 
X and Y is a fuzzy set in the 
Cartesian product X·Y 

• mR: X·Y fi [0,1] gives the degree 
to which x and y are related to 
each other in R. 
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Composition of Relations


• Two fuzzy relations R in X·Y and S 
in Y·Z can be composed into R�S 
in X·Z as 
mR�S(x,z) = maxy˛Y[min[mR(x,y), mS(y,z)]] 
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Composition Example


R S R�S
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Probabilities of Fuzzy 

Events


• “Probability of cold weather 
tomorrow” 

• U = {x1, x2, …, xn}, p is a 
probability density, A is a fuzzy set 
(event) in U 

n 

P( A) = � mA ( xi ) p( xi ) 
i=1 
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Defuzzyfication


• Finding a single representative for 
a fuzzy set A in U = {xi|i in {1,…n}} 

• Max: x in U such that mA(x) is maximal 

• Center of gravity: 
n�i=1 

ximA (xi ) 
n�i=1 

mA (xi ) 
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Alpha Cuts


• A is a fuzzy set in U 
• Aa = {x | mA(x)‡ a } is the a-cut of 

A in U 
• Strong a-cut is 
Aa = {x | mA(x)> a } 

• Alpha cuts are crisp sets 
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Fuzzy Logic


• Different views 
– Foundation for reasoning based on 

uncertain statements 
– Foundation for reasoning based on 

uncertain statements where fuzzy set 
theoretic tools are used (original Zadeh) 

– As a multivalued logic with operations 
chosen in a special way that has some fuzzy 
interpretation 
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Fuzzy Logic


• Generalization of proposition over 
a set 

• Let cS:U fi {0,1} denote the 
characteristic function of the set S 

• Recall that in “crisp” logic 
I(p(x)) = p(x) = cT(p)(x) 
where p is a proposition and T(p) is 
the corresponding truth set 

HST 951 Spring 2003 



Fuzzy Logic 

• We extend the proposition 
p:U fi {0,1} 

to be a fuzzy membership 
p:U fi [0,1] 

• The fuzzy set associated with p 
corresponds to the truth set T(p) and 
p(x) is the degree of truth of p for x 

• We extend the interpretation of logical 
formulae analogously to the crisp case 
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Fuzzy Logic Sematics 

• Basic operations: 
– I(p(x)) = p(x) 
– I(a v b) = max(I(a),I(b)) 
– I(a ^ b) = min(I(a),I(b)) 
– I(~a) = 1 – I(a) 
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Fuzzy Logic Sematics 

• Implication: 
–Kleene-Dienes 

I(a fi b) = max(I(~a),I(b)) 

• Dubois and Prade (1992) analyze 
other definitions of Implications 
–Zadeh 

I(a fi b) = max(I(~a),min(I(a), I(b))) 
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Fuzzy Rules


• “If x in A then y in B” is a relation R 
between A and B 

• Two model types 
– Implicative: (x in A fi y in B) is an upper bound 
– Conjunctive: (x in A ^ y in B) is a lower 

bound 
– Crisp motivation: 

cA(x) ^ cB(y) £ cR(x,y) £ (1 - cA(x)) v cB(y) 
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Conjunctive Rule application


• R:U·U fi [0,1] is a rule 
If p(x) then q(y) 

• Using a generalized Modus Ponens 
A’ 
A fi B 
B’ 
we get that 
B’ = A’ � R 
B’(y) = maxx[min[A’(x),R(x,y)]] 
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Rough Sets 

• Pawlak 1982 
• Approximation of sets using a 

collection of sets. 
• Related to fuzzy sets (Zadeh 

1965), in that both can be viewed 
as representations of uncertainty 
regarding set membership. 
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Rough Set: Set Approximation


C2 C4C3 

C1 
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Rough Set: Set Approximation


C2 C4 C3 

C1 

D 
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Rough Set: Set Approximation


C2 C4 C3 

C1 

D 

• Approximation of D by {C1, C2, C3, C4}: 
– C1 definitely outside 
– C3 definitely inside: lower approximation 
– C2 ¨ C4 are boundary 
– C2 ¨ C3 ¨ C4 are upper approximation 
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Rough Set: Set Approximation


• Given a collection of sets C={C1, C2, C3,…} 
and a set D, we define: 
– Lower approximation of D by C, 

D L = UCi such  that Ci ˙ D = Ci 

– Upper approximation of D by C, 
DU = UCi such  that Ci ˙ D „ ˘ 

– Boundary of D by C, 
UDL = DU - DL 
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Rough Set: Definition


• A set D is rough with respect to a 
collection of sets C if it has a non-
empty boundary when 
approximated by C. Otherwise it is 
crisp. 
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Rough Set: Information System 
• Universe U of elements, e.g., patients. 
•	 Set A of features (attributes), functions f 

from U to some set of values Vf. 

• (U,A) – information system 

U = {1,2,3,4,5,6,7,8,9}

A = {a,b,c,d}

Va = Vb = Vc = Vd = {0,1}


Object no. a b c d 
1 0 0 1 0 
2 0 1 1 1 
3 0 1 1 0 
4 0 1 1 0 
5 1 0 0 1 
6 1 0 0 1 
7 1 1 0 1 
8 1 1 0 1 
9 1 1 0 0 
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Rough Sets: Partition of U 

•	 E = {(i,j) ˛ U · U | abc(i) = abc(j)}, 
equivalence relation on U 

• E(1) = {1} = C1 

• E(2) = E(3) = E(4) = {2,3,4} = C2 

• E(5) = E(6) = {5,6} = C3 

• E(7) = E(8) = E(9) = {7,8,9} = C4 

1
3 7 

2 5 6 
8 

9 

4 

Object no. abc d 
1 (0,0,1) 0 
2 (0,1,1) 1 
3 (0,1,1) 0 
4 (0,1,1) 0 
5 (1,0,0) 1 
6 (1,0,0) 1 
7 (1,1,0) 1 
8 (1,1,0) 1 
9 (1,1,0) 0 
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Rough Sets: 

Approximating D


1 

3 
9 

4 

2 5 6 
7 

8 

D 

DU = {2,3,4,5,6,7,8,9} = C2 ¨ C3 ¨ C4 

DL = {5,6} = C3 

DU - DL ={2,3,4,7,8,9} = C2 ¨C4 
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Rough Sets: Approximate 
membership d 

1 

d (i) = 
| D ̇  E(i) | 3 

| E(i) | 

4 
• d(1) = 0 

2 5 6 
7 

8 

D 

• d(2) = d(3) = d(4) = 1/3 
• d(5) = d(6) = 1 
• d(7) = d(8) = d(9) = 2/3 
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Rough Sets: Data Compression


Information: Partition given by equivalence.

Find minimal sets of features that preserve 

information in table. 

Object no. a b c d 
1 0 0 1 0 
2 0 1 1 1 
3 0 1 1 0 
4 0 1 1 0 
5 1 0 0 1 
6 1 0 0 1 
7 1 1 0 1 
8 1 1 0 1 
9 1 1 0 0 

Object no. a b d 
1 0 0 0 
2 0 1 1 
3 0 1 0 
4 0 1 0 
5 1 0 1 
6 1 0 1 
7 1 1 1 
8 1 1 1 
9 1 1 0 
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Rough Sets: Discernibility Matrix 

• MA = {mij}, A = {a,b,c} 

• mij = {a ˛ A | a(k) „ a(l), k ˛ Ci, l ˛ Cj } 

MA = 
{} {b} {a,c} {a,b,c} 
{b} {} {a,b,c} {a,c} 
{a,c} {a,b,c} {} {b} 
{a,b,c} {a,c} {b} {} 

Object no. a b c 
1 0 0 1 

2,3,4 0 1 1 
5,6 1 0 0 

7,8,9 1 1 0 

C = {{b},{a,c}{a,b,c}} – set of non-empty entries of MA


Minimal sets that have non-empty intersection with all 

elements of C are {a,b} and {b,c} (Finding: Combinatorial)

These are called reducts of (U,A)

A reduct is a minimal set of features that preserves the 

partition.
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Rough Sets: Extending d


• Problem: we only have 
the d value for 4 of 8 
possible input values. 
What is d(1,1,1) ? 

•	 By using compressed data 
that preserves the 
partition, we cover more 
of the feature space. All of 
it in this case. d(1,1,1) = 
d(1,1) = 2/3. 

abc d 
(0,0,1) 0 
(0,1,1) 1/3 
(1,0,0) 1 
(1,1,0) 2/3 

ab d 
(0,0) 0 
(0,1) 1/3 
(1,0) 1 
(1,1) 2/3 
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Rough Sets: Extending d 

•	 Problem: extension not unique 
(and can extend to different 
parts of feature space). 

• d(1,1,1) = d(1,1) = 1/3. 
•	 Possible solution: generate 

several extensions and combine 
by voting. Generating all 
extensions is combinatorial. 

• d(1,1,1) = (2/3 + 1/3)/2 =1/2 

abc d 
(0,0,1) 0 
(0,1,1) 1/3 
(1,0,0) 1 
(1,1,0) 2/3 

bc d 
(0,0) 1 
(0,1) 0 
(1,0) 2/3 
(1,1) 1/3 
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Rough Sets: Classification rules

Object no. a b c d 

1 0 0 1 0 
2 0 1 1 1 
3 0 1 1 0 
4 0 1 1 0 
5 1 0 0 1 
6 1 0 0 1 
7 1 1 0 1 
8 1 1 0 1 
9 1 1 0 0 

ab d 
(0,0) 0 
(0,1) 1/3 
(1,0) 1 
(1,1) 2/3 

Rules with right hand side support numbers: 
a(0) AND b(0) => d(0) (1) 
a(0) AND b(1) => d(1) OR d(0) (1, 2) 
a(1) AND b(0) => d(1) (2) 
a(1) AND b(1) => d(1) OR d(0) (2, 1) 
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A Proposal for Mining 

Fuzzy Rules


• Recipe: 
1. Create rough information system by 

fuzzy discretization of data 
2. Compute rough decision rules 
3. Interpret rules as fuzzy rules 
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Fuzzy Discretization 

• A1, A2, …, An are fuzzy sets in U 
• disc: U fi {1,2,...,n} 

disc(x) = {i | mAi
(x) = max{mAj

(x) | j ˛ {1,2,...,n}} 

• disc selects the index of the fuzzy 
set that yields the maximal 
membership 

• Information system: subject each 
attribute value to disc 
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Fuzzy Rough Rules: Example


A1(3.14) = 0.6 
A1(0.1) = 0.3 
A2(3.14) = 0.5 
A2(0.1) = 0.8 

if A1 then d=0

if A2 then d=1


Object no. a d 
1 3.14 0 
2 0.1 1 

Object no. a d 
1 1 0 
2 2 1 
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Uncertainty


• Fuzzy sets can be said to model 
inherent vagueness 
Bob is "tall" - vagueness in the meaning 
of "tall", not in Bob's height 

• Rough sets can be said to model 
ambiguity due to lack of information 
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And... 

• Thank you for your attention 
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