Space Shuttle External Tank Optimization

Anonymous MIT Students System Design and Management Massachusetts Institute of Technology

Abstract

A simplified model of the Space Shuttle External Tank was used to set up a Multidisciplinary System Design Optimization problem. First, Return of Investment (ROI) was established as single objective. Both gradient based and heuristic methods were used to solve this problem. Sequential Ouadratic Programming (SQP) was the gradient based method chosen. In the other hand, a Genetic Algorithm was used as the heuristic optimization tool. In addition, sensitivity analysis was performed to the optimal solution found. Finally, a multi-objective problem was set up adding the total tank weight (TW) as second objective. Adaptive Weighted Sum (AWS) was the method selected to solve the problem.

Introduction

After the Cold war, and especially in times of economic crisis, manned space programs have been questioned per its high costs and the associated safety risks. Reusable launch vehicles (RLV's) have emerged as an alternative to reduce expenses by reusing equipment and flights. commercializing space Recent discussions in Obama's administration about the financials of future human space exploration have motivated us to explore the use of Multidisciplinary System Design Optimization (MSDO) as a tool to improve the business case of current space systems.

The most successful RLV has been, without question, NASA's Space Shuttle. At a high level, the elements of the Space Shuttle (at launch) are: the external tank, two solid rocket boosters and the orbiter vehicle. The external tank has several functions: to provide the fuel and the oxidizer for the main engines (liquid hydrogen and liquid oxygen) and to serve as structure to the system (the solid rocket boosters and the obiter vehicle are attached to the tank at launch). The tank is the only element that is not reused and is also the heaviest.

Framing the optimization problem

In this analysis we will use a simplified model of the external tank as described in Figure 1. This model assumes the tank is divided in three main sections: the hemisphere, the cylinder and the nose cone. Table 1 shows the six design variables considered in this problem and Table 2 shows the parameters assumed.

Figure 1. Graphic representation of the External Tank simplified model

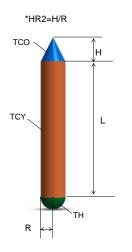


Table 1. Design	Variables
-----------------	-----------

Symbol	Variable	Variable name
X ₁	HR2	Height /radius ratio
X2	L	Length of cylindrical body
X ₃	R	Radius of the hemisphere

X4	ТСО	Nose cone thickness
X5	TCY	Cylinder thickness
X ₆	TH	Hemisphere thickness

Table 2. Design Parameters considered

#	Parameter name	
1	Cost of material / unit	6.00 dollar/kg
2	Cost of seam / unit	12 dollar/m
3	Material weight / unit	0.003 kg/cm^3
4	Pressure	70 N/cm^2
5	Payload 1	14300 N
6	Payload 2	5000 N
7	Profit ratio	0.05
8	Nominal payload	30000 N
9	Fixed cost per weight	$2x10^4$ dollar/kg
	unit	

In addition, this model assumes five constraints as described in Table 3.

 Table 3. Model constraints

Symbol	Constraint description
g_1	Vibration factor \geq Nominal vibration
	factor
g_2	Tank volume \geq Nominal volume
<i>g</i> ₃	Eq. stress in cylinder \leq Allowed Stress
g_4	Eq. stress in hemisphere \leq Allowed
	Stress
g 5	Eq. stress in nose cone \leq Allowed
	Stress

The main objective we decided to pursue is to maximize the Return of Investment (ROI) of the system. We selected this objective because it is one of the most common metrics to measure profitability in projects. As a second objective we will minimize the weight of the tank.

This optimization problem requires a multidisciplinary approach as different aspects in design affect the main output function (ROI). Some of these disciplines are: material science, structures engineering, aerodynamics, finance, manufacturing engineering, mechanical vibrations and chemistry.

Based on the interactions between internal design variables a modularization was proposed for this optimization model. Figure 2 shows the

 N^2 diagram showing the modules identified: Surfaces and volumes, seam lengths, weight and material cost, seam cost, stress, total cost, payload and return of investment.

Figure	2.	N^2	diagram	with	proposed
modulari	zatio	n			

Model implementation

As initial step, the modules in Figure 2 were implemented in an Excel spreadsheet in order to understand how the model behaves. By trying different combinations in the design vector, we were able to get our first feasible solution (a design vector that meets all the constraints). Expression (1) shows the initial design vector and (2) the output of the objective function (ROI) at x_0 .

$x_0 = [2]$	4800	435	0.75	0.7	0.86]	(1)
ROI = 0).0605					(2)

Although the design above is meeting all the constraints, the ROI output is not acceptable. As next step we used Design of Experiments as a tool to explore design space.

Design of experiments

Our experiment plan started by assuming nonlinearity in the factor effects. Therefore, we decided to implement a design of experiments with three levels per factor. By trial and error we defined rough feasibility ranges for each design variable. Using this information, the levels shown on Table 4 were proposed:

Table 4. DOE	factors and	levels
--------------	-------------	--------

Factors	Level 1	Level 2	Level 3
HR2	1	2	3
L	4600	4800	5000
R	420	435	450

ТСО	0.66	0.75	0.84
TCY	0.66	0.7	0.74
TH	0.76	0.86	0.96

For a full factorial experiment, with 6 factors and 3 levels, we would have $3^6 = 729$ experiments. In order to keep the number of experiments in a manageable quantity, we decided to use orthogonal arrays. Per the number of factors in our model and the required resolution, we decided to implement a L₁₈ orthogonal array. Table 5 shows our experiment plan for DoE.

Table 5. Experiment plan L_{18} orthogonal array

Exp	HR2	L	R	TCO	TCY	TH
1	1	4600	420	0.66	0.66	0.76
2	1	4800	435	0.75	0.7	0.86
3	1	5000	450	0.84	0.74	0.96
4	2	4600	420	0.75	0.7	0.86
5	2	4800	435	0.84	0.74	0.76
6	2	5000	450	0.66	0.66	0.86
7	3	4600	435	0.66	0.74	0.86
8	3	4800	450	0.75	0.66	0.96
9	3	5000	420	0.84	0.7	0.76
10	1	4600	450	0.84	0.7	0.86
11	1	4800	420	0.84	0.74	0.96
12	1	5000	435	0.75	0.66	0.76
13	2	4600	435	0.84	0.66	0.96
14	2	4800	450	0.66	0.7	0.76
15	2	5000	420	0.75	0.74	0.86
16	3	4600	450	0.75	0.74	0.76
17	3	4800	420	0.84	0.66	0.86
18	3	5000	435	0.66	0.7	0.96

After calculating the ROI for each experiment, we evaluated the main effects for each factor level. Table 6 summarizes these results. Levels with the best effect are highlighted in gray. As we want to maximize ROI we selected the levels with the maximum effect.

Table 6. DoE output: Main effects

Tuble of Doll output. Main effects							
Variable	Level	Factor	Mean	Main Effect			
	1	1	-0.2455	0.2555			
HR2	2	2	-0.4377	0.0633			
	3	3	-0.8197	-0.3187			
	1	4600	-0.3959	0.1050			
L	2	4800	-0.6122	-0.1112			
	3	5000	-0.4948	0.0062			
	1	420	-0.6945	-0.1936			
R	2	435	-0.1060	0.3950			
	3	450	-0.7024	-0.2014			
TCO	1	0.66	-0.7426	-0.2416			

	2	0.75	-0.4401	0.0609
	3	0.84	-0.3806	0.1204
	1	0.66	-0.5596	-0.0586
TCY	2	0.7	-0.6043	-0.1034
	3	0.74	-0.3390	0.1620
	1	0.76	-0.5986	-0.0976
TH	2	0.86	-0.3494	0.1515
	3	0.96	-0.5959	-0.0950

If we set all design variables to the levels with the best main effects we obtain a starting point for further optimization analysis:

$x_0 = [1]$	4600	435	0.84	0.74	0.86]	(3)
ROI = 0.	.0903					(4)

Gradient-based optimization

Algorithm selection

To carry on the shuttle external's tank optimization we decided to implement the Sequential Quadratic Programming (SQP) method. Nowadays, this gradient-based algorithm is considered one of the most efficient approaches to obtain the optimal solution in Non Linear Programming (NLP). Similarly to Newton's unconstrained optimization method, SQP creates in each step towards the objective a local model of the problem and solves it. Then, based in that result, continues its path to an optimal solution.

The main difference of SQP relative to other methods is that the former tries to solve the nonlinear program directly instead of transforming it in a sequence of unconstrained minimization problems. Furthermore, as explained in class, SQP is widely applied in engineering problems and it can be easily handled in MATLAB using the *fmincon* function in the optimization toolbox.

Return of Investment optimization

We selected ROI as the single objective for which to optimize our system. We selected this objective per its relevance in real life design projects. A company will not invest in executing a given design if it will not yield any benefit.

Our approach to implement SQP algorithm was to use MATLAB optimization toolbox (*fmincon* function). This algorithm minimizes a given objective function within the constraints determined by the user. To fit our model to this algorithm we redefined our objective function:

$$J(x) = -ROI \tag{5}$$

In addition, constraints in Table 3 were redefined as inequality constraints ≤ 0 . As initial point, we used the vector obtained from DoE exploration.

$$x_{0} = \begin{bmatrix} HR2 \\ L \\ R \\ TC0 \\ TCY \\ TH \end{bmatrix} = \begin{bmatrix} 1 \\ 4600 \\ 435 \\ 0.84 \\ 0.74 \\ 0.86 \end{bmatrix}$$
(6)

The model found a minimum after 10 iterations and all constraints were successfully satisfied. The optimal design vector found is shown below:

$$x^* = \begin{bmatrix} 4.559\\ 4200.74\\ 426.032\\ 0.646\\ 0.646\\ 0.7416 \end{bmatrix}$$
(7)

ROI improved:

$$ROI = -J(x^*) = 0.22657 = 22.66\%$$
 (8)

This was a significant improvement compared to our first "guess". All constraints are met and we have a positive ROI that would make our project viable from the investment standpoint.

As the nominal volume required was reduced, the optimizer was able to reduce the magnitude of all design variables and improved the ROI.

Scaling

The gradient-based algorithm used in A3 to optimize ROI was Sequential Quadratic Programming (SQP). The optimal solution found in A3 with this method was:

$$x^* = \begin{bmatrix} HR2\\ L\\ R\\ TC0\\ TCY\\ TH \end{bmatrix} = \begin{bmatrix} 4.559\\ 4200.74\\ 426.032\\ 0.646\\ 0.646\\ 0.7416 \end{bmatrix}$$
(9)

Using finite differencing, the Hessian matrix at x^* was calculated:

$H(x^*) =$	0.0016 -0.0000 0.0002 0.0546 -0.0001	$\begin{array}{c} -0.0000\\ -0.0000\\ 0.0000\\ -0.0000\\ 0.0003\\ 0.0003\end{array}$	0.0002 0.0000 0.0000 0.0012 0.0026	$\begin{array}{c} 0.0546 \\ -0.0000 \\ 0.0012 \\ 0.0001 \\ -0.0001 \\ 0.0000 \end{array}$	$\begin{array}{c} -0.0001\\ 0.0003\\ 0.0026\\ -0.0001\\ -0.0003\\ 0.0000\end{array}$	$\begin{array}{c} -0.0000\\ -0.0000\\ 0.0005\\ -0.0000\\ -0.0000\\ 0.0000 \end{array}$	(10)
	L-0.0000	-0.0000	0.0005	-0.0000	-0.0000	0.0000]	

The diagonal of this hessian matrix is:

Scaling factors

The values of the diagonal of the Hessian calculated in (1) lie outside the limits defined (within 10^2 and 10^{-2}). Therefore, scaling is required for all variables. The proposed scaling method is:

$$y_i = D_i x_i$$
, where $D_i = (s)^{\frac{1}{2}}$ (12)

Where *s* is the power of ten (10^x) closest to the elements of the diagonal of the Hessian computed on (9). The proposed scaling factors (D) are shown in Table 7.

Table 7. Prope	sed scaling	factors.
----------------	-------------	----------

	Tuble 7. Troposed searing factors.					
Design variable	Scaling	Scaled design				
	factor	variable				
Height-radius	10-1	$y_1 = (10^{-1})x_1;$				
ratio HR2 (x_1)		$x_1 = 10y_1$				
Length $L(x_2)$	10 ⁻⁵	$y_2 = (10^{-5})x_2;$				
		$x_2 = 10^5 y_2$				
Radius R (x_3)	10 ⁻³	$y_3 = (10^{-3})x_3;$				
		$x_3 = 10^3 y_3$				
Cone thickness	10 ⁻²	$y_4 = (10^{-2})x_4;$				
TCO (x_4)		x ₄ =100y ₄				
Cylinder	10 ⁻²	$y_5 = (10^{-2})x_5;$				
thickness TCY		$x_5 = 100y_5$				
(x ₅)		-				
Hemisphere	10 ⁻²	$y_6 = (10^{-2})x_6;$				
thickness TH		$y_6 = (10^{-2})x_6;$ $x_6 = 100y_6$				
(\mathbf{x}_6)						

The Hessian matrix was recalculated after scaling the design variables, the new values of the diagonal are shown below:

Using the scaled design variables and a scaled initial vector, SQP algorithm was re-run. The *fmincon* function in MATLAB was used to run SQP. The optimal design vector changed and the objective function output was improved:

$$x^* = \begin{bmatrix} 2.3697\\ 4933.417\\ 410.378\\ 0.6227\\ 0.6219\\ 0.7182 \end{bmatrix}$$
(14)

A new value for the objective function was found:

$$ROI = -J(x^*) = 0.2833 = 28.3\%$$
(15)

The ROI value is better than the 0.22657 we obtained after the first intent with the SQP algorithm. The Hessian matrix was re-calculated at the new optimal design vector. The new values for the diagonal were:

The values in (16) lie within the limits we initially assumed. Therefore, there is no need for further scaling.

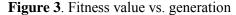
Heuristic Optimization

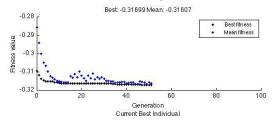
As an initial attempt, we tried to implement a Simulated Annealing algorithm to this optimization problem. The approach was to implement all the constraints in the perturbation function of the algorithm. We encountered several complications in this attempt, but the most significant was the complexity of the perturbation function. The intent of this function was to generate a neighboring design vector within the constraints of the problem. Unfortunately, the time for computing this vector was very unpredictable and caused the algorithm to stall. Therefore, we decided to switch to a different heuristic method. We selected the GA algorithm. Our decision was based on the qualities and characteristics of this specific robust technique that are suitable for searches in highdimensional problems and complex design spaces, as this problem presents.

To implement the Genetic Algorithm, our first approach was to use the MATLAB optimization toolbox (ga function). Typically, GA algorithms do not allow implementing constraints directly. So, we decided to use the constraints as penalties to the fit function. The structure of the fit function used in this GA is described below:

$$f = -J_1(x_1, x_2, \dots, x_6) + g_1 + 2.85g_2 + g_3 + g_4 + g_5$$
(17)

Also, lower and upper boundaries for each design variable were determined based on what we learned from the system in previous analysis. Figure 3 shows the evolution of the fitness value.





The algorithm converged after 50 iterations. The optimal design vector found was:

$$x^* = \begin{bmatrix} HR2\\L\\R\\TCO\\TCY\\TH \end{bmatrix} = \begin{bmatrix} 2.4\\4932.893\\409.997\\0.62\\0.619\\0.763 \end{bmatrix}$$
(18)

$$ROI = -J(x^*) = 0.2836 = 28.4\%$$
(19)

This result is very similar to the one obtained with the SQP after scalling.

Sensitivity analysis

To do a sensitivity analysis of our output function, we calculated the normalized gradient for the output function at the optimal solution. As first step we calculated the numerical gradient of $J(x^*)$ using the finite difference method. In this analysis, we considered (14) as the optimal design vector. The gradient at the optimal is:

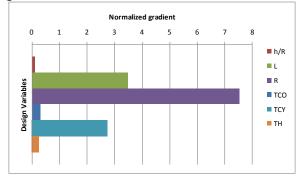
$$\nabla J(x^*) = \begin{bmatrix} 0.0123\\ 0.0002\\ 0.0052\\ 0.1334\\ 1.2469\\ 0.1037 \end{bmatrix}$$
(20)

Then we calculated a normalized gradient vector:

$$\nabla \bar{J} = \frac{x^*}{J(x^*)} \nabla J = \begin{bmatrix} 0.102885\\ 3.482822\\ 7.532529\\ 0.293216\\ 2.737194\\ 0.262892 \end{bmatrix}$$
(21)

Figure 4 shows a graphic comparison between the normalized gradients.

Figure 4. Tornado chart with normalized gradient



The variable that seems to have the highest impact on the output is the Radius (R) followed by the Length (L) and the thickness in the cylinder (TCY). These results somehow match intuition as we found the design variable R affect most of the calculations in the model. Relative to the sensitivity of the optimal vector x^* with respect to the fixed parameters, we explored fixed cost to launch (FL) and cost of seam per length unit (C). In order to calculate the sensitivity, we considered the following equation:

$$\frac{d}{dp}\left(\frac{dJ}{dx}\right) = \frac{\partial\left(\frac{dJ}{dx}\right)}{\partial p} + \frac{\partial\left(\frac{dJ}{dx}\right)}{\partial x}\frac{dx}{dp} = 0$$
(22)

The expression above can be rewritten as:

$$\frac{dx}{dp} = -\frac{\partial \left(\frac{dJ}{dx}\right)}{\partial p} \left[\frac{\partial \left(\frac{dJ}{dx}\right)}{\partial x}\right]^{-1}$$
(23)

Sensitivity of x^{*} to changes in cost seam per length unit (C):

$$\frac{d(x)}{d(C)} = \begin{bmatrix} \frac{\frac{dHR2}{dC}}{\frac{dL}{dC}} \\ \frac{\frac{dR}{dC}}{\frac{dR}{dC}} \\ \frac{\frac{dTCO}{dC}}{\frac{dTCY}{\frac{dTH}{dC}}} \end{bmatrix} = \begin{bmatrix} -0.02576 \\ \sim 0 \\ \sim 0 \\ -0.00413 \\ \sim 0 \\ \sim 0 \end{bmatrix}$$
(24)

Sensitivity of x^{*} to changes in fixed cost to launch (FL):

$$\frac{d(x)}{d(FL)} = \begin{bmatrix} \frac{\frac{dHR2}{dFL}}{\frac{dL}{dFL}} \\ \frac{\frac{dR}{dFL}}{\frac{dR}{dFL}} \\ \frac{\frac{dR}{dFL}}{\frac{dTCO}{\frac{dFL}{\frac{dTCY}{\frac{dFL}{\frac{dTCY}{\frac{dFL}{\frac{dTH}{\frac{dTH}{\frac{dTH}{\frac{dT}{\frac{dHR2}{\frac$$

From the results shown above, FL does not have a significant impact on the location of the optimal vector \mathbf{x}^* . In the other hand, the cost of the seam per unit of length does have small impact on the optimal vector especially on the height to radius ratio (HR2).

To identify the active constraints we evaluated the optimal vector x^* in each of the five inequality constraints in this model. We found that all of them are approximately zero which means all constraints are active. Table 8 shows the summary:

 Table 8. Active constraints at x^{*}.

Constraint	Form	Valu	Active
		e at	?
		x*	
Vibration	1-	~ 0	Yes
constraint	VF/VFallowed		
	≤ 0		
Volume	1-	~ 0	Yes
constraint	Vtank/Vnomina		
	1≤0		
Eq.	Scyl/Sallowed-	~ 0	Yes
Cylinder	1≤0		
stress			
constraint			
Eq.	Shem/Sallowed	~ 0	Yes
Hemispher	-1≤0		
e stress			
constraint			
Eq. Cone	Scon/Sallowed-	~ 0	Yes
stress	1≤0		
constraint			

Although the five constraints show values very close to zero, we estimate the volume constraint is the most important one as it shows the smallest value. To evaluate the change in the objective function output and in the optimal design vector, we modified the nominal volume value (relaxed nominal value 5% to reach 2780080380). The new optimal design vector after relaxing the constraint g_2 :

	ן 2.249	l	
	4933.18		
$x^* =$	4933.18 401.073		$(\mathbf{a}_{\mathbf{c}})$
x =	0.609		(20)
	0.608		
	L 0.702 J		

ROI if relaxing Volume nominal value by 5%:

$$ROI = -J(x^*) = 0.356 \tag{27}$$

Multi-objective Optimization

In the first part of this paper, we optimized the system using the single objective function Return of Investment (ROI). For a multiobjective optimization, we decided to use the tank total weight as the second objective. In this case, our intent is to minimize the weight function. We selected the Adaptive Weighted Sum method to solve this optimization problem. To implement this algorithm the following expression was used:

$$J_{MO} = \sum_{i=1}^{z} \frac{\lambda_i}{sf_i} J_i$$
(28)

Specifically:

$$J_1 = -ROI \tag{29} \\ J_2 = TW \tag{30}$$

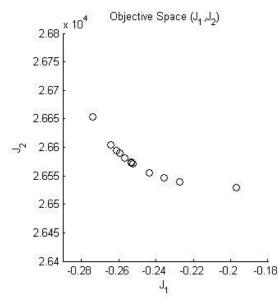
Scale factors to normalize the objective functions:

$$sf_1 = J_1^* = 0.2739$$
 (31)
 $sf_2 = J_2^* = 2.6364 * 10^4$ (32)

To find the pareto front, SQP was used iteratively to find the optimal values for J_1 and J_2 at different values of λ . Figure 5 shows the pareto front found with this algorithm. All constraints are satisfied at all points.

The pareto front plot shows that the objectives are mutually opposing. As we maximize ROI, we increase the Total Weight of the tank. In the other hand, if we minimize the weight we reduce the ROI. We considered this result counterintuitive as we expected mutually supporting objectives (that minimizing weight would maximize ROI).

Figure 5. Pareto front. ROI (J_1) vs. total tank weight TW (J_2) .



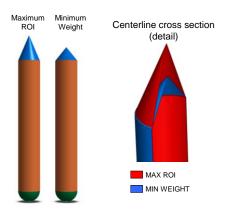
To further investigate this result we traced back the ROI and TM at the extremes in the Pareto frontier. It was found that in order to increase ROI we should increase the amount of payload that the customer pays. To do this we should reduce the tank cross section considered in the aerodynamic penalty. Per the stress constraints, the material thickness increases, as well as the cone height. This combination drives the weight up.

In the opposite scenario, minimizing weight reduces the size of the cone and also the material thickness. Therefore, the tank cross section considered for aerodynamic drag increases. This translates in less amount of payload that is paid by the customer. To confirm our hypothesis we created a CAD model for the two designs at the extremes:

	2.3709 T			ן 1.299
	4933			4933
· · ·	410.3862		· · ·	415.9526
$x^*(MAX ROI) =$	0.6227	,	$x^*_{(MIN TW)} =$	0.6386
	06220			0.6304
	L 0.7182 J			L 0.7279 J
(33)				

Figure 6 shows a CAD model of the extreme designs described in (22). These CAD models are congruent with our hypothesis.

Figure 6. Comparison between designs at the extremes of the Pareto frontier.



Conclusions

After several iterations using different methods we are confident about our exploration of design space. Within the given constraints we believe we found the global optimum design. For our specific problem, the gradient based method used (SQP) demonstrated to be very effective and quick. But, it was trapped in local optimal values when we implemented SQP for the first time. This issue was eliminated after scaling.

The heuristic model was useful to expand the design space exploration, but the result was very similar to the one obtained with the gradient based method.

In real-world problems, where multimodal functions exist, a Hybrid Optimization strategy is highly recommended. For example, heuristic optimization methods such as Genetic Algorithms (GA) or Simulated Annealing might be used to manage the initial steps when seeking for solutions to widely explore the design space. Then, the utilization of a method such as SQP, results extremely useful and efficient to explore thoroughly around the solutions found with the heuristic tool.

References

[1] The future of American human space exploration and the "Critical Path"

Roger Handberg. Jan. 2010 http://www.thespacereview.com/article/1543/1

[2] Is there a business case for RLV's? Jeff Foust. Sept. 2003 http://www.thespacereview.com/article/44/1

- [3] Hybrid Optimization Using DIRECT, GA, and SQP for Global Exploration. Satoru HIWA, Tomoyuki HIROYASU, Mitsunori MIKI
- [4] Principles of Optimal Design, Papalambros,

P. Wilde, D.

[5] Introduction to sequential quadratic programming. Gockenbach, M.

Appendix

A1- Modularized master table

		Description	S ymbol	Unit of measurement	Inputs	Outputs
				measurement		
	1	Height / Radius ratio	HR2	cm		11, 12, 17, 28
2 Ior	2	Length of center cylindrical body	L	cm		9, 10, 15
Design Vector	3	Radius of hemisphere	R	cm		7,8,9,10,11,12,16, 17, 18, 19, 24, 25, 26, 28, 32
ug 4		Nose cone thickness	T _{cone}	cm		21, 22, 26
De	5	Cylinder thickness	T _{cvlinder}	cm		21, 22, 24
	6	Hemisphere thickness	Themisphere	cm		21, 22, 25
les	7	Hemisphere Surface	HS	cm ²	3	13, 21, 22
lun	8	Hemisphere Volume	HV	cm ³	3	14
Vo	9	Cylinder Surface	CS	cm ²	2,3	13, 21, 22
pu	10	Cylinder Volume	CV	cm ³	2,3	14
Surfaces and Volumes	11	Cone Surface	CnS	cm ²	1,3	13, 21, 22
face	12	Cone Volume	CnV	cm ³	1,3	14
Sur	13	Tank surface	TS	cm ²	7, 9, 11	28
01	14	Tank volume	TV	cm ³	8, 10, 12	36
	15	Seam length in Cylinder	01	am	2	20, 23
th	15	Seam length in Hemisphere	S1 S2	cm	3	20, 23
Seams length	10	Seam length in Cone	\$2 \$3	cm	1,3	20, 23
ıs le	17	Seam length cylinder & hemisph		cm	3	20, 23
ean		Seam length cylinder & cone	S4	cm	3	
Š	19	Total Seam length	S5	cm	3 15-19	20, 23
	20		St	cm	15-19	
Weight and	21	Tank weight	TW	kg	9,5,7,6,11,4	30, 32
material cost	22	Tank material cost	C _{material}	dollar	9,5,7,6,11,4	27
			- materiai			
Seam Cost	23	Cost of seams	C	dollar	15-19	27
Seam Cost			C _{seam}			
	24	Cylinder Eq. stress	Е	N/cm sq	3, 5	34
Stress	25	Sphere Eq. stress	SE	N/cm sq	3, 6	35
Stu	26	Cone Eq. stress	CE	N/cm sq	3, 4	33
	-	1			- ,	
Total cost	27	Total Cost	TC	dollar	22, 23	27
Payload	28	Aerody namic drag penalty	A	kg	1,3,13	30
			11			
u ti	29	True Launch cost	TLC	dollar	27	31
stme	30	Customer pays	CP	dollar	21, 28	31
Return On Investment	31	ROI	ROI	dollar	29, 30	
	32	Vibration Constraint	g1		1,2,3,4,21	
Ħ	33	Stress constraint cone	g5	N/cm ²	26	
raii	34	Stress constraint cylinder	g3	N/cm ²	24	
st		· · ·	50		1	
Constraint	35	Stress constraint hemisphere	g4	N/cm ²	25	

ESD.77 / 16.888 Multidisciplinary System Design Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.