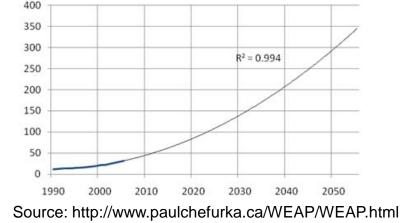
Wind Turbine Design Optimization

Anonymous MIT Students

Presentation Outline max(content), min(time)

- Introduction
- Problem Formulation
- Design Vector
- Analysis Methodology & Parameters
- Fidelity & Complexity
- Optimization Methods
- Single Objective Results
- Multi Objective Results
- Conclusions & Future Work


Introduction

- Focus on renewable energy
- Disciplines involved
 - Aerodynamics
 - Control
 - Structures
 - Acoustics
 - Electrical engineering

Interactions

- Control
- Structures

(rotational speed affects aerodynamics)(blade deflection affects aerodynamics)

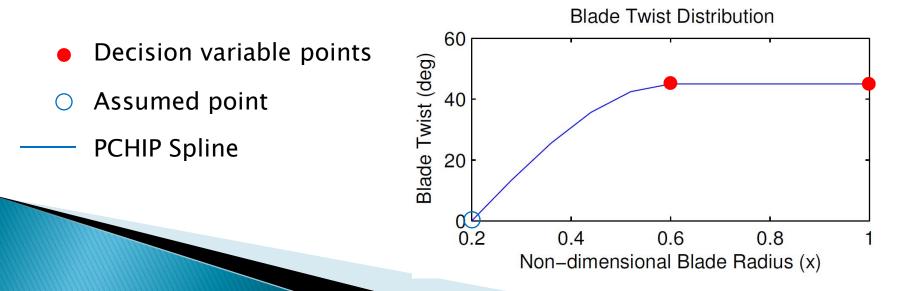
Renewable Energy Projection

Considered in this project

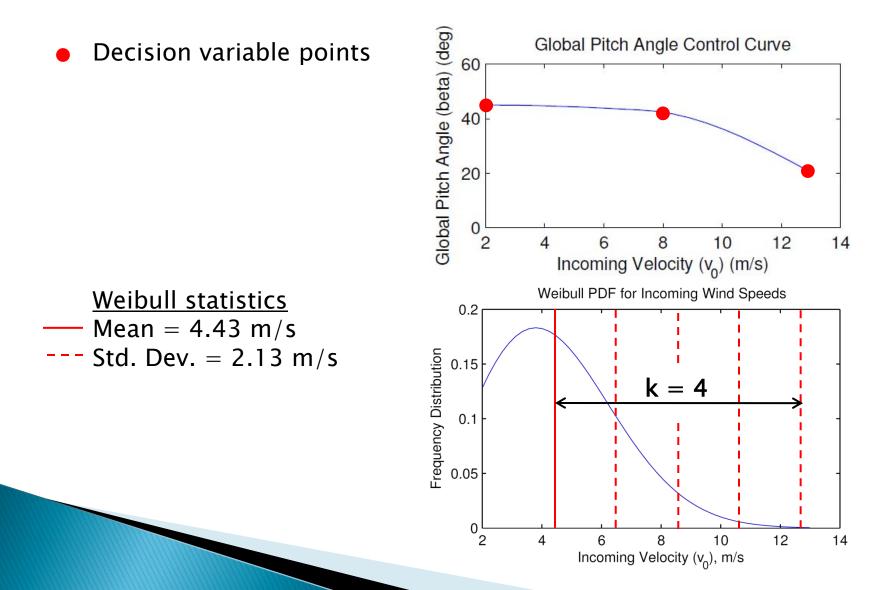
Problem Formulation

Objective Function

 $Objective = J(x, param) = \frac{Expected Power Output}{Blade Material Volume} = \frac{P_E(x, param)}{V_{blades}(x, param)}$

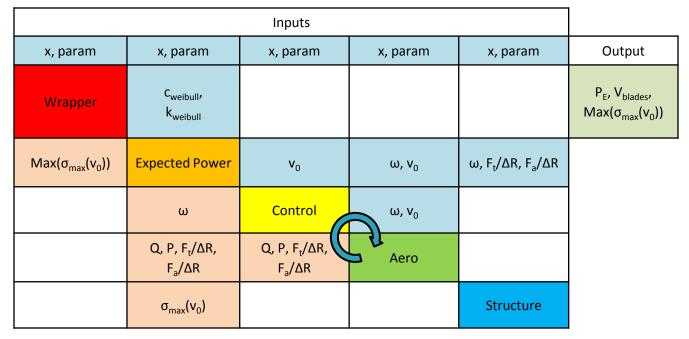

- Over a range of incoming wind speeds
- Penalty Function

$$\xi(x, param) = \sum \left[\rho_{penalty} \left((\sigma_{max}^r - \sigma_{allowable})^+ \right)^2 \right]$$


Design Vector

Decision variable	Symbol	Dimension	Lower bnd.	Upper bnd.	Units
Blade radius	R	1	5.00	16.15	meters
Maximum generator torque	Qmax	1	1000	20000	Newton-meters
Blade shell thickness	t	1	0.004	0.020	meters
Maximum design wind speed	k	1	0	4	std. dev. above mean
Twist distribution	T	2	0	$\pi/4$	radians
Foil shape distribution	F	1	0	1	non-dimensional
Chord length distribution	C	3	0.1	10	meters
Pitch control curve	β	3	0	$\pi/4$	radians

Model reduction by Piecewise Cubic Hermite Interpolating Polynomials



Design Vector (beta, k)

Analysis Methodology

N² Diagram

- Aero Blade Element Momentum Theory
 - Relaxed iteration root-finding
- Expected Power Simpson's rule integration over Weibull distribution
- Structure Equivalent beam theory
- Control Line search convex optimization (fminbnd in MATLAB)

Inter-module optimization

Parameters

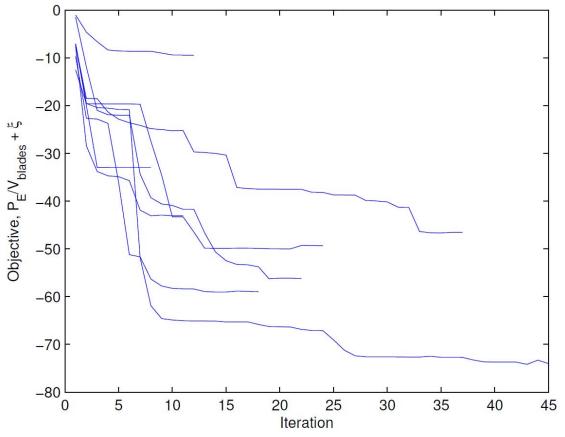
Parameter	Symbol	Value	Units
Air density	ρ_{air}	1.225	$\mathrm{kg/m^3}$
Blade material density	ρ_{mat}	2700	$\rm kg/m^3$
Blade material elasticity	E_{mat}	70e9	Pa
Blade material yield strength	σ_Y	20	MPa
Hub radius/blade radius	h_R	0.2	<u>–</u> 22
Number of blades	Z	3	-:
Cut-in velocity	v_{cutin}	2.0	m/s
Allowable stress/yield stress	$perc_Y$	0.70	-0
Weibull distribution scale parameter	$c_{weibull}$	5	
Weibull distribution shape parameter	$k_{weibull}$	2.2	- 2
Root foil	-	S814	-
Tip foil		S813	<u>–</u> 23
Cost of blade material	c_1	1000	$^{\rm m^3}$
Penalty parameter	$\rho_{penalty}$	1e-8	Pa
Points in blade discretization	n	11	
Number of wind speeds in Weibull integration	n_W	7	-

Discretization Parameters (affect fidelity)

Fidelity/Complexity

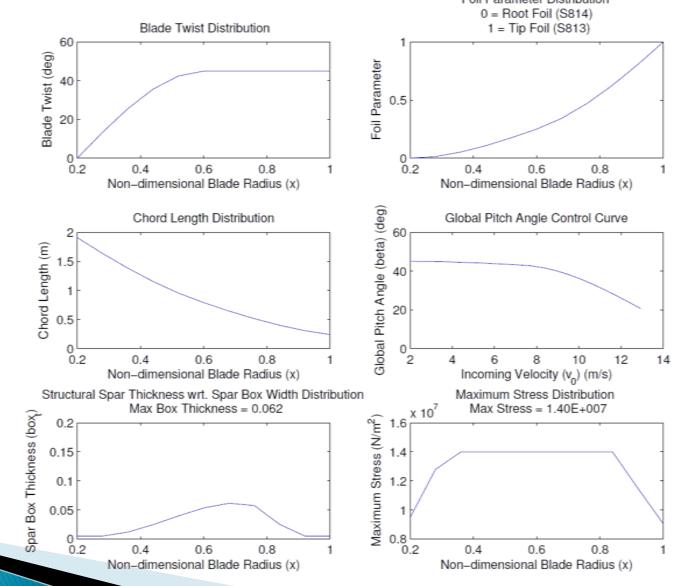
- Model order reduction
 - PCHIP
- Analysis methodology low fidelity
 - Quick computation times
- Validation
 - Structures code equates with analytical classical beam theory for cantilevered beam
 - Ran out of time to compare with Qprop / VABS high-fidelity codes
 - Tell us if you know of a wind turbine design to benchmark against

Optimization Methods

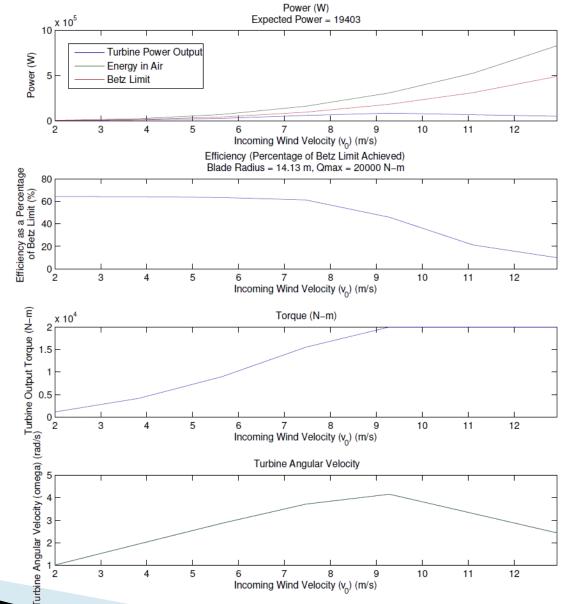

Design of Experiments (DOE)

- Complex design space (initial idea)
- Main effects
- Space-filling starting points for Gradient-based methods
- Good results, short running times

Gradient-based methods

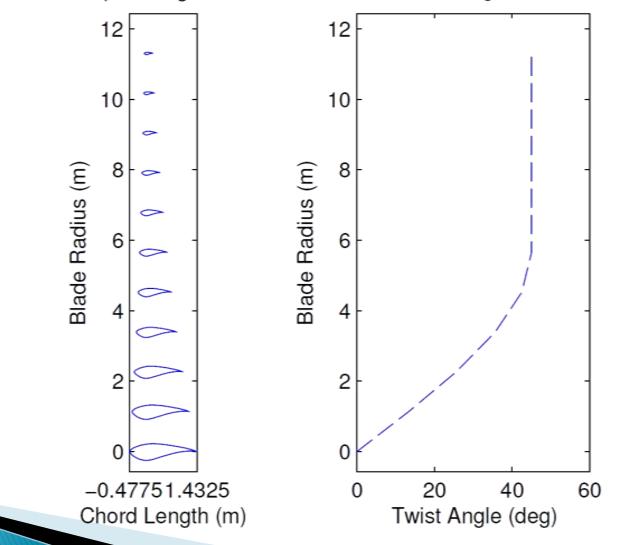

- Continuous design variables with no discontinuities
- Constraints imposed by square term penalty method
- Implemented SQP with MATLAB's 'fmincon'
- Re-scaling Hessian
- Multi-start (non-convex objective function and feasible space)
- Good results, long running times
- Heuristic methods
 - Multi-Objective Genetic Algorithm (MOGA)
 - Poor results, long running times

SQP Convergence Sample



-Varying convergence rates -Varying solution values \rightarrow Non-convexity

Results – SQP (Design Vector)



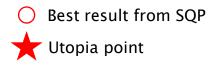
Results – SQP (Performance)

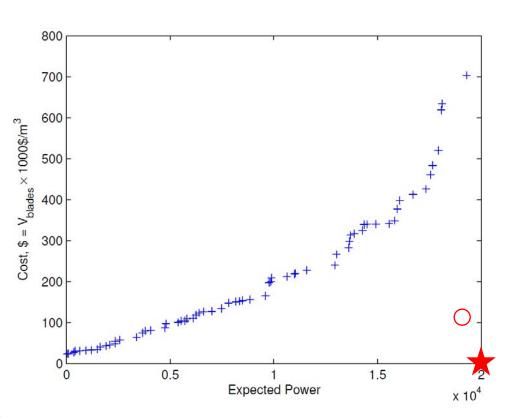
Results - SQP (blade shape)

Blade Shape Along Blade Radius Blade Twist Along Blade Radius

Results – Tight Bounds

Design Variables	Values	Comments		
R	14.13			
Qmax	20000	1		
t	0.004	↓		
k	4	1		
T(mid)	0.79	1	➡	lower bound
T(tip)	0.78	1		
F	0.25			
C(root)	1.91			upper bound
C(mid)	0.79			
C(tip)	0.24			
beta	0.79	1		
	0.75			
	0.36162			


Sensitivity Analysis


	$rac{\partial J}{\partial R}$	$rac{\partial J}{\partial Qmax}$	$rac{\partial J}{\partial t}$	$rac{\partial J}{\partial k}$	$\frac{\partial J}{\partial T_{mid}}$	$\frac{\partial J}{\partial T_{tip}}$	$\frac{\partial J}{\partial F_{mid}}$
$J_1 = P_E$	1.510	0.041	0	0.367	0.858	0.2966	-0.007
$J_2 = V_{blades}$		0	0.8557	0	0	0	0.0024
$J_3 = \sigma_{max}$	0.0823	-0.0161	0.0434	0.1015	0.1661	0.1856	-0.0005
	$\frac{\partial \bar{J}}{\partial C_{root}}$	$\frac{\partial J}{\partial C_{mid}}$	$rac{\partial J}{\partial C_{tip}}$	$rac{\partial J}{\partial eta_{cutin}}$	$rac{\partial J}{\partial eta_{mean}}$	$\frac{\partial J}{\partial \beta_c utoff}$	
$J_1 = P_E$	-0.122	0.368	0.150	0.067	1.787	0.045	
$J_2 = V_{blades}$	0.5382	0.5638	0.0486	0	0	0	
$J_3 = \sigma_{max}$	0.0260	0.0024	-0.0010	-0.0706	0.0791	0.0115	

- Sensitivity Analysis (2nd order central difference)
 - Decision variables that are tight on box bounds have directions of improvement without violating feasibility (Qmax increase $\rightarrow P_E/V_{blades}$ increase, σ_{max} decrease
 - Decision variables that are free on box bounds have no directions of improvement that do not violate constraints (R increase $\rightarrow \sigma_{max}$ increase)
 - Connection to Lagrange multipliers

Results – MOGA

- Slope of Pareto Front
 - initially benefit from going to higher expected power
 - later stages cost outweighs benefits of increasing expected power
 - optimum somewhere in between
- Utopia point highest expected power for the lowest cost
- SQP outperforms MOGA
 - Not enough running time
 - Computational expense

Conclusions

DOE is powerful and inexpensive

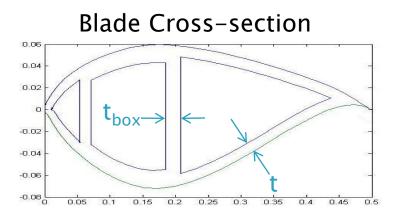
SQP works great for local optimization

Heuristic methods may be too expensive

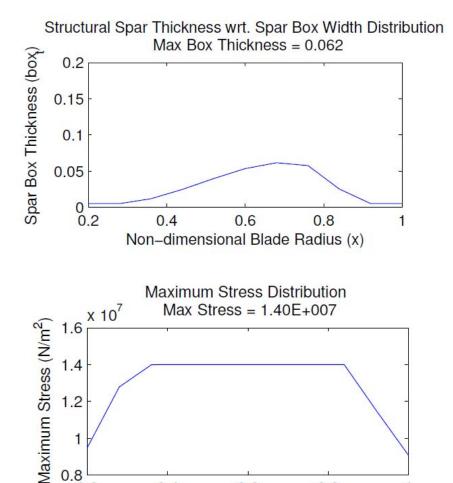
Future Work

- Higher resolution optimization
 - More decision variables for distributions

Higher fidelity analysis


- Increase blade discretization
- Qprop
- Also for validation
- VABS
- Higher-powered optimization
 - DAKOTA implementation may be more powerful than the Matlab Optimization Toolbox
- Questions?

Backup slide: Design Vector (t)


1.2

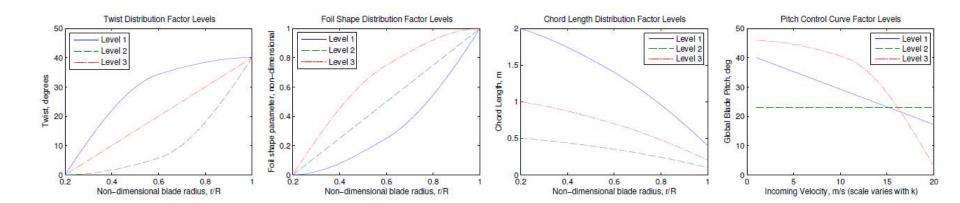
1

0.8 ∟ 0.2

- Thickness of structural spar compensates for light structure
 - Adds leeway 0

0.6

Non-dimensional Blade Radius (x)


0.8

1

0.4

Backup slide: DOE factors/levels

Factor	Variable	Levels	Level 1	Level 2	Level 3	Focus
1	R	3	16.15	14.15	12.15	Magnitude
2	Qmax	3	12000	16000	20000	Magnitude
3	t	3	0.004	0.01	0.02	Magnitude
4	T	3	(0.6, 0.7)	(0.1, 0.7)	(0.35, 0.7)	Shape
5	F	3	0.25	0.5	0.75	Shape
6	C	3	(2, 1.4, 0.4)	(0.5, 0.35, 1)	(1, 0.7, 0.2)	Magnitude
7	β	3	(0.7, 0.5, 0.3)	(0.4, 0.4, 0.4)	(0.8, 0.7, 0.05)	Shape
8	k	2	3	4		Magnitude

Backup slide: DOE Main Effects

	P_E/V_{blades}			σ^r_{max}		
Factor	Level 1	Level 2	Level 3	Level 1	Level 2	Level 3
1	-1286	1438	-152	0.112	0.983	-1.095
2	-114	865	-751	-0.962	0.685	0.277
3	3374	-783	-2591	1.895	-0.778	-1.117
4	4148	-2919	-1229	0.955	-0.183	-0.772
5	-105	8	96	0.322	0.297	-0.618
6	-670	1862	-1192	-2.410	3.592	-1.182
7	251	-2319	2069	0.087	-0.855	0.768
8	-250	250	0 7 7	-0.535	0.535	52

Best combination of factor levels (2,2,1,1,3,2,3,2)

 $\begin{array}{l} P_E/V_{blades} = 20686 \ \mathrm{W/m^3} \\ \sigma^r_{max} = 12.22 \ \mathrm{MPa} \end{array}$

ESD.77 / 16.888 Multidisciplinary System Design Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.