

1

Multidisciplinary System Design Optimization (MSDO)

Mixed-Integer Continuous Problems Recitation 7

Andrew March

© Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics

M lesd

Today's Topics

- What a mixed-integer problem looks like
- I am skipping the theory...
- Options to solve them
 - Direct Search
 - Gradient-Based methods
 - Direct
 - Indirect
 - Heuristic Techniques
 - SA
 - GA
- PSet 4, A2 Discussion

- At least one continuous variable
- Example:

Mesd

$$\min f(x) = x^T x$$

s.t.
$$-5 \le x_1 \le 5, x_1 \in \mathfrak{T}$$
$$-5 \le x_2 \le 5$$

16.888

ESO 77

- No gradient in discrete direction.
 - What are optimality conditions?

$$\min f(x) = x^T x$$

s.t.
$$-5 \le x_1 \le 5, x_1 \in \mathfrak{I}$$
$$-5 \le x_2 \le 5$$

Constrained Version

- No gradient in discrete direction.
 - What are optimality conditions?

$$\min f(x) = x^T x$$

s.t. $-5 \le x_1 \le 5, x_1 \in \mathfrak{T}$
 $-5 \le x_2 \le 5$
 $x_1 + x_2 \le 2$

5 5

 \mathbf{x}_2

x₁

• Use a direct search method

X₁

55

x₂

- Simplex method, where one direction always takes a unit step
- Compass search (easy to set-up)

- Fix discrete variables and optimize continuous
- Use a DoE technique for discrete variables
 - Full-factorial expansion
 - Latin-Hypercube
 - Random starting points
- Gradient-based optimization for continuous.

- 1. Convert all discrete variables to continuous variables
- 2. Use typical gradient based algorithms on continuous variables
- 3. Round final continuous variables to nearest feasible discrete value
- Problems:
 - Not possible for all problems.
 - Finding nearest feasible discrete value may be difficult
 - Answer might be quite poor.

Mesd Gradient-Based: Response Surface 16,888

1. Generate a response surface: x_{ij} $\stackrel{i=dimension}{j=sample point #}$

 $X = \begin{bmatrix} 1 & x_{11} & x_{21} & x_{11}x_{21} & x_{12}^2 & x_{21}^2 \\ 1 & x_{12} & x_{22} & x_{12}x_{22} & x_{12}^2 & x_{22}^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{1n} & x_{2n} & x_{1n}x_{2n} & x_{1n}^2 & x_{2n}^2 \end{bmatrix}$ $\beta = \begin{bmatrix} \beta_1 & \beta_2 & \beta_3 & \beta_4 & \beta_5 & \beta_6 \end{bmatrix}^T$

 $F = \begin{bmatrix} f(x_{11}, x_{21}) & f(x_{12}, x_{22}) & \cdots & f(x_{1n}, x_{2n}) \end{bmatrix}^T$

Solve for β : $X\beta = F$

Least-Squares Solution: $X^T X \beta = X^T F$

- 2. Optimize the response surface
- 3. Round discrete variables, and check function value/convergence.
 - a. Recalibrate response surface locally and repeat?

• Generally easy to setup MIO problems.

16 888

- Brute force?
- No convergence guarantee.

Simulated Annealing

- Easy to accommodate integer variables:
- Example:

 $\min f(x) = x^T x$

$$s.t. \quad -5 \le x_1 \le 5, x_1 \in \mathfrak{I}$$
$$-5 \le x_2 \le 5$$

 Possible random perturbations:

$$- x_1 = x_1 + C(-1,0,1)$$

 $- x_2 = x_2 + N(0,1)$

Genetic Algorithm

- Can you use a real-valued-GA?
- Can you use a discrete-GA, for instance binary encoded?

- Could use ternary, etc.

• Binary encoded GA (Lecture 11)

•
$$nbits = \frac{\ln\left(\frac{x_{UB} - x_{LB}}{\Delta x}\right)}{\ln 2}$$

•
$$\Delta x = \frac{(x_{UB} - x_{LB})}{2^{nbits}}$$

- How many bits are needed?
 - Continuous variables on a computer?
 - Integer variable, $x \in \{1, 2, 3, 4\}$?
 - Integer variable, $x \in \{1, 2, 3, 4, 5\}$?
 - Continuous variable, $x \in [0,1]$, $\Delta x=0.1$?
 - Continuous variable, $x \in [0,1]$, $\Delta x=0.01$?

I_{beam} Material Support Material

Summary

- Mixed-discrete continuous problems can be complicated.
- Formal theory is complex, and gradientbased methods have difficulty.
 - Can be smart with DoE techniques
- Heuristic algorithms can be considered brute force, but typically can be made to optimized mixed-discrete continuous problems.
 - Just need to let them run forever.

ESD.77 / 16.888 Multidisciplinary System Design Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.