24.901 Phonetics-1

1. sound results from pressure fluctuations in a medium which displace the ear drum to stimulate the auditory nerve

- air is normal medium for speech
- air is elastic (cf. bicyle pump, plastic bag, etc.)
- pressure fluctuations originate at a source that produce a wave in the medium that carries energy to the ear
- air particles do not move from the source to the ear--rather the energy is passed through the medium
- oscillogram/waveform is a graphic (visual) representation of pressure fluctuations

2. sound waves

- **periodic**: wave repeats at regular intervals (figure 2.1, page 3)
- **frequency** is number of repetitions per unit of time: f=1/T Hertz (Hz) is 1 cycle per second
- the perceived pitch of a sound depends on its frequency; at frequencies above 1,000 Hz equal increases in frequency are not perceived as equal increases in pitch 1,000 2,000 Hz ≈ 2,000 4,000 Hz
- speed of sound in air is c. 340 m/s; wavelength is speed (m/s) * period (T)
- **amplitude** is maximal displacement of wave above zero line and corresponds to intensity of sound; relation between amplitude and perceived intensity is not linear; the relative difference in perceived intensity is approximated by a logrithmic scale whose unit is the **decibel** (dB); change of 1 dB is JND; 5 dB is about twice intensity

 $[\theta] = 13 \text{ dB}, [s] = 17 \text{ dB}, [i] = 34 \text{ dB}, [a] = 40 \text{ dB}$

- aperiodic sounds have waves that do not repeat
- fricatives like [s] are aperiodic while vowels like [a] are periodic

3. spectrum

- any complex wave can be analyzed as the combination of sinusoidal waves of different frequencies and intensities (Fourier Theorem); see fig. 4.1
- for a periodic sound like a vowel these are the **fundamental** frequency F0 and multiples of the fundamental known as **harmonics** or **overtones**
- the quality of a periodic sound depends on the relative amplitude of the harmonics
- these can be displayed in a **power spectrum** (fig. 4.2)
- examples from Ladefoged 1962: fig. 7.4 of vowel [ɔ]
- note different frequencies but same overall shape of spectrum
- differences in vowel quality result from different vocal tract shapes

- they give rise to different spectra (e.g. figure 7.5)
- the perceived quality of a vowel can be adequately described by the relative location of the peaks in the lower part of the spectrum, termed **formants**
- most vowels are adequately characterized by the first three formants: F1, F2, F3
- fig. 8.2 (CIP) shows formants for eight AE vowels
- **F1** primarily reflects vowel height in invrse fashion: greater F1 reflects lower vowel
- F2 reflects vowel backness as well as lip rounding: lower F2 reflects greater backing or rounding
- the science of acoustic phonetics models speech as the behavior of waves in various types of tubes (Ken Stevens 1998 *Acoustic Phonetics*, 6.541)

4. spectrogram

- a graphic display of the components of a sound (e.g. figure 8.3)
- x-axis is time
- y-axis is frequency
- intensity of sound at a given frequency is indicated by gray scale: darker the wave the greater the intensity.
- **narrow-band** spectrograms give better resolution in the frequency dimension; striations are horizontal
- wide-band spectrograms give better resolution in the time dimension; striations are vertical
- formant chart
 - $\circ \quad \text{origin in NE corner}$
 - Bark scale^{*}
 - \circ ~ lower part of spectrum has much more energy for vowel sounds

^{*} The scale ranges from 1 to 24 and corresponds to the first 24 critical bands of hearing (in Hz): 20, 100,200,300,400,510, 630, 770, 920, 10801270,1480, 1720, 2000, 2320, 2700, 3150, 3700, 4400, 5300, 6400, 7700, 9500, 12000, 15500.

Image by MIT OpenCourseWare.

Image by MIT OpenCourseWare.

000	2500	2000	1500	1000	500	200
						200
						300
						400
						500
						600
						700
			· · · · · · · · · · · · · · · · · · ·			800
						900
						1000
						1100
						1200
						1300 1400
						- 1500 Hz

Image by MIT OpenCourseWare.

second formant on the abscissa (the horizontal axis).

Image by MIT OpenCourseWare.

24.901 Language and Its Structure I: Phonology Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.