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Graded problems: 

1.	 In discussing coordination numbers and deriving the permitted range of radius ratio, RA / RB, 
allowed for each ( where RA is the radius of the central ion and RB is the radius of the 
surrounding ions) we skipped over 5-fold coordination without much attention. Were we 
being careless? 

Let us consider an arrangement of ions in which three B ions are arranged in a 
triangle around an A ion, and for which all four of these ions are coplanar. Let’s now place a 
fourth and fifth B ion above and below the A ion in directions that are normal to the plane of 
the triangle. Voila! Five-fold coordination!! This is a nifty little polyhedron in the shape of a 
triangle (three-fold) bipyramid. There is no immediately apparent reason why this 
coordination polyhedron should not occur in crystal structures. 

a.	 Prepare a careful sketch of the polyhedron. 
b.	 If each of the spheres that represent the B cation are in contact with the A ion, will all 

of the B-B contacts along the edges of the polyhedron be of equal length? 
c.	 Derive values for the range of radius ratios RA / RB that are permitted for this 

configuration. 
d.	 Despite all of the above, and the fact that the polyhedron has a symmetry that is 

permitted in crystals, this grouping is almost never found to occur in ionic crystals! 
Can you explain why? 

2. 
a.	 Determine the pairs of coordination numbers that would be permitted for a compound 

of stoichiometry AB2  if A is surrounded only by B ions and vice versa, and if all A ions 
have the same coordination and all B ions do as well. 

b.	 Using the results of the calculations that we have performed for the range of radius 
ratios RA / RB  that are permitted for various coordination numbers please establish 
the permitted range of radius ratios for each of the pairs of coordination numbers in 
part (A). 

c.	 Pauling lists 0.68 Angstroms for the radius of Ti 4+ and 1.40 Angstroms for O 2-. What 
would you predict for the coordination numbers of the ions in TiO2? 
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3. Working with the First Law.  One mole of an ideal gas is compressed reversibly from 5L to
1 L at a constant pressure of 5 atm, and absorbs 2400 J of heat during this process.

a. Calculate the work and internal energy change in this process.

Because the process is reversible, the work is simply:

€ 

dw = −PdV

w = −P dV
5L

1L

∫ = −(5atm)(1L − 5L) 8.3144J
0.082057L ⋅ atm
 

 
 

 

 
 = 2026J

The work is positive: work is done on the gas in this process.  Next, the internal energy change is
determined using the first law.  Heat is absorbed by the gas in this process, so q is > 0:

€ 

dU = dq + dw
ΔU = 2400J + 2026J = 4426J

b. Determine the initial and final states (P, V, and T) of the gas.

The states are calculated using the ideal gas law:

Initial state:

€ 

P = 5atm
V = 5L

T =
PV
nR

=
(5atm)(5L)

(1mole)(0.082057 L ⋅ atm
K ⋅mole

)
= 305K

Final state:

€ 

P = 5atm
V =1L

T =
PV
nR

=
(5atm)(1L)

(1mole)(0.082057 L ⋅ atm
K ⋅mole

)
= 60.9K

Note in proof on this problem:  We haven’t formally introduced the internal energy relation for the
ideal gas in class yet (U = 1.5nRT).  The heat absorption described for this process would clearly
violate this relation- the internal energy is increasing while the temperature decreases.  This was an
error in the formulation of the problem; it does not affect the calculations you are asked to make, but
this process would be an unstable change for a ‘real’ ideal gas.

c. Now consider a roundabout means of moving the gas from the given initial state to
the same final state, as illustrated below.  Use a 3-step reversible process, first a
constant volume drop in pressure, followed by a constant-pressure compression,
followed last by a constant-volume rise in pressure (steps 1, 2, and 3 in the sketch
below).



€

€

€

i.	 What is the internal energy change of this composite process (step 1 + step 2 
+ step 3)?

We know that internal energy is a state function. Thus, if we are moving from the same initial to the 
same final state in our composite process, then the internal energy change for the composite 
process must be the same as in our previous calculation: 4426 J. The internal energy change 
does not depend on the path taken to move from the initial to final states because U is a state 
function. 

ii.	 Calculate the total heat transfer and work in this composite process (using P2 

as denoted in the diagram below) and use the calculation to prove that heat 
and work are not state functions. 

Using the first law, we can relate the total internal energy change for the composite process to the 
heat and work transfers in each step: 

dU = dq + dw 
ΔUtotal = qstep1 + wstep1 + qstep 2 + wstep 2 + qstep 3 + wstep 3 = 4426J 

Because the process is reversible, we can determine the work terms in each step: 

dwstep1 = −PdV = 0 
dwstep 2 = −PdV 
dwstep 3 = −PdV = 0 

wstep 2 = − 1atm( ) −4L( )
 
 

8.3144 J  
 

 0.082057 L ⋅ atm  
wtotal = wstep 2 = 405J 

…much less work is done in this composite process. Combining these equations, we obtain a final 
expression for the total heat transferred in the composite process: 

  8.3144 J  
qtotal = qstep1 + qstep 2 + qstep 3 = 4426J − wstep 2 = 4426 − −(1atm)(−4L)	 = 4021J

 0.082057L ⋅ atm 

The total heat transfer is also different from the original process. Thus we see that though the 
internal energy change is the same in both the original and composite processes, by taking a 
different path, the total heat and work performed are different. Since these functions show path 
dependence, they are not state functions. 
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Initial state
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Final state
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5 atm 

1 atm 

1L	 5L V 

4.	 Heat vs. temperature. You are designing a housing for a high-temperature apparatus, 
which serves to connect this heat-producing generator component to other parts of a larger 
system. The housing is in thermal contact with the generator (i.e., it can transfer heat with 
the generator). The generator must operate in cycles: at the start of each cycle, the system 
starts at a uniform temperature of 577°C, and produces heat. In each cycle, 29.4 kJ of this 
heat is passed to the housing- after which, the system is allowed to slowly cool back to 577°C 
(constant pressure conditions throughout). Your design team would like to use aluminum as 
the housing material as it is lightweight and inexpensive. The housing would be formed from 
1 kg of aluminum. Relevant physical data for aluminum is provided below. 

Tm = 932 K 

Cp
s = 20.7 + 12.4x10-3T J/mole K 

Cp
l = 29.0 J/mole K 

ΔHm = 10,500 J/mole 

Do you recommend that aluminum be used in this application? Explain your choice with 
thermodynamic calculations. 

The ‘resting’ operating temperature of the system, 577°C = 850 K- which is only 82 K below the 
melting temperature of alumimum. Thus, our first concern is whether the housing would be heated 
to its melting point in the course of a cycle of operation (!). We are told how much heat is evolved to 
the housing per cycle and the mass of the housing. The total heat absorbed per mole of aluminum 
per cycle is: 
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€

€

€


29,400J

cycle 

 

 

27g 
mole 

 
1 J 
= 793.8 

moleAl ⋅ cycle
 



q = 





1,000gAl 

We can compare this to the heat required to take the housing from its initial temperature at the start 
of the cycle (850 K) to its melting point (932 K): 

932 932 J qto _ Tm = ∫ CpdT = ∫ (20.7 + 12.4 x10−3T)dT = 2603 
moleAl850 850 

Since the heat absorption per mole of Al in the cyclic process would not be enough to reach the 
melting temperature, we could state to first order that Al would be acceptable in this application. 

5.	 Super-cooled Silicon. You have a sample of silicon that is super-cooled to 1670 K from a 
molten state, and then transferred to an adiabatic container at constant pressure. Calculate: 

a.  The fraction of silicon that solidifies when the melt is placed in the adiabatic container 

b. the enthalpy change in this process 

c. the entropy change in this process 

d. the final temperature of the system at equilibrium 

Data for Si: Tm = 1683 K 

ΔHm = 50,630 J/mole 

Cp
s = 22.817 + 0.0038995T – 8.288x10-5T2 – 0.000354063T-2 J/mole K 

Cp
l = 27.19 J/mole K 

Because we are calculating a change of state by a process involving heat transfer- here involving 
solidification of a liquid- it is very useful to make a qualitative (or quantitative) plot of the heat transfer 
for the system vs. temperature- and because we are at constant pressure, the heat transfer is simply 
the change in enthalpy of the system: 

dH = dU + PdV + VdP = dq + VdP 
dH = (dq)P 

Using this equality, we can plot relative changes in enthalpy over any temperature range of interest, 
provided we know the heat capacities and phase transitions occurring in that range. For example, I 
plot below the relative enthalpy change starting at T = 1500 K and heating a sample up past its 
melting point (shown by the black line): 
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The plot is constructed by determining the enthalpy at each point using the constant pressure heat
capacity.  At 1500K, the silicon is in the solid state:

€ 

dH = dU + PdV +VdP = dq +VdP
dH = dq( )P

ΔH = dq∫ = CP
S (T)dT

1500

T

∫ = 22.817 + 0.0038995T − 8.288 ×10−5T 2 − 3.54 ×10−4T−2( )dT
1500

T

∫

Note that it really doesn’t matter what particular temperature I start the integration at, since I only
care about the relative enthalpy change.  The silicon melts at T = 1683K, and further heating occurs
with the solid phase heat capacity.  To calculate an enthalpy change from 1500K to 1700K, for
example, I must account for the enthalpy of melting absorbed by the system to transform to the liquid
state:

€ 

dH = dU + PdV +VdP = dq +VdP
dH = dq( )P

ΔH1500→1700 = dq∫ = CP
S (T)dT

1500

1683

∫ + ΔHM + CP
L (T)dT

1683

1700

∫

Now, we are given the situation that a sample of molten (liquid) silicon is super-cooled- kept in the
liquid state below the melting point, and the temperature is reduced to 1670K.  The path of super-
cooling is shown on the enthalpy change plot by the red line- a line whose slope is given by Cp

L

since the Si remains in the liquid state.  The sample is then allowed to equilibrate under adiabatic
conditions.  A super-cooled or super-heated sample is not at equilibrium: it is always unstable or
metastable.  Thus, our sample will be driven to transform to an equilibrium state consistent with the
constraints on the system.  The constraint in this case is that the system is contained adiabatically-
no heat can enter or leave the system.  This condition requires that the system can only move on our
enthalpy change plot along a line of constant enthalpy (i.e., zero enthalpy change, zero heat
transfer).  This is denoted by the dotted line on the plots above.  Thus, to reach an equilibrium state
without releasing any heat, the system moves to the right along the dotted line to a point along the
equilibrium curve at the phase transition (denoted by the asterisk).  The final state of the system is a
two-phase equilibrium: based on the position of the asterisk, it is clear that the system is mostly still
liquid, with a small fraction of solid formed.  The system cannot completely solidify, because
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complete solidification would required that a substantial amount of heat be removed from the
system.

We can now quantitatively answer the questions posed:

(a) The fraction of silicon in the solid state at equilibrium is determined by the amount of heat
removed during super-cooling relative to the total enthalpy of melting.  Graphically, the fraction of
solid is the ratio SC/ΔHm from the plot below.  The value of the enthalpy change SC is determined
using the heat capacity:

€ 

SC = ΔHsup er−cooling = dq∫ = CP
L (T)dT

1670

1683

∫ = (27.19)dT
1670

1683

∫ = 353.5 J
mole

€ 

f S =
SC
ΔHm

=
353.5
50,630

= 0.0069

Thus we see that this modest degree of super-cooling leaves the system in nearly a total liquid state
at the adiabatic equilibrium.
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(b) We’ve already pointed out that the condition of an adiabatic process constrains the system to
zero heat transfer.  At constant pressure, zero heat transfer means ΔH = 0 for the process.

(c) The entropy change is determined using the constant pressure heat capacity and our
releationship between dq and S:

€ 

dq = TdS

∴ΔS =
dq
T

= 0∫
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Because this is an adiabatic process, there is no entropy change.  We will later see with the
introduction of the second law that the entropy is always constant during adiabatic processes.  Why
can't we plug into the relationship between Cp and S?  i.e.:

€ 

CP = T ∂S
∂T
 

 
 

 

 
 
P

∴ΔS =
CP

L (T)
T

dT
1670

1683

∫ =
(27.19)
T

dT
1670

1683

∫ = 27.19ln 1683
1670
 

 
 

 

 
 = 0.211

J
mole ⋅K

wrong!

… the error here is that we have used the heat capacity for the liquid- when we are in converting
some of the liquid to solid!  The heat capacity is not defined during the transformation, and we thus
can’t use this equation for an adiabatic transformation.

(d)  The final temperature of the system is simply determined by the equilibrium point attainable
under the adiabatic constraint: the melting temperature of the system.  Tfinal = 1683K.


