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1.  Lattices and symmetry. 
 

a. A pair of periodic two-dimensional patterns are presented on the following sheets.  We 
have defined the concept of “lattice” and “lattice points” prior to our discussion of 
diffraction.  Sketch in an array of lattice points on each pattern and connect them to 
construct the conventional unit cell. ( Remember that the definition of a lattice is a 
collection of geometric points that summarize the translational periodicity of a pattern.  A 
motif in the same orientation must “hang” at the same distance and in the same 
orientation at each point.  The unit cell chosen by convention uses the two shortest 
translations in the lattice and, in addition, is selected to show any specialization of the cell 
– for example, rectangular, square, etc.) 

 
b. As an optional exercise locate any symmetry elements, such as rotation axes or mirror 

planes, that are present. 
 
 
 
 
 
 
 
 
2. On a piece of ordinary graph paper draw an array of lattice points that define a square lattice. 

a. Connect the lattice points to define  
 

i. a primitive cell 
ii. a double cell 
iii. a triple cell 

 
b. For the primitive cell that you have drawn:  
 

i. Draw lines in the directions defined by [12] and [21]. 
 

ii. Draw the “planes” (lines, actually, in two dimensions but which are defined by 
indices h and k analogous to what one does in 3-D) with indices (13) and (31). 

 
 

iii. For each of the above planes, show that ‘hanging’ a plane in this orientation on a 
sufficient number of lattice points in the neighborhood of the origin divides the 
interval between the origin of the lattice and the intercept plane into (h x k) parts. 
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3. Consider a one-dimensional crystal composed of identical atoms separated by a translation  a = 
10 Å.  The crystal is irradiated with an x-ray beam having wavelength λ = 1.0 Å that is incident on 
the crystal at an angle µ = 30 o.   

 
Using the Laue equation for diffraction by a one-dimensional crystal: 

 
a. Compute the total  number of diffraction cones that are produced. 
 
b. What is the maximum index, m,  among the set of diffraction cones that are produced? 

 
 
c. To what value of µ must the angle of incidence be changed in order to have the cone with 

the next highest value of m just come into existence? 
 

 

 

 

4. Using Maxwell relations and the variable-change theorem.  Let’s determine a Maxwell 
relation for a new thermodynamic function, the Gibbs free energy.  Free energies are 
extremely useful for determining phase behavior in multicomponent systems at constant 
temperature and pressure, and we will be making great use of this function soon.  The Gibbs 
free energy is defined by: 

G = H − TS  

a. Show that the Maxwell relation for the Gibbs free energy is −
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b. Use the variable change theorem and Gibbs free energy Maxwell relation to prove the 
following equation: 
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5. Compressing a solid.  The pressure on 100g of nickel is increased reversibly and 
isothermally from 0 to 500 atm.  Assume the density of the sample is initially 8.90x103 kg/m3 
and the isothermal compressibility remains constant at 6.75x10-12 Pa-1respectively during this 
process. 

a.  Calculate the final volume of the sample and determine the % change in volume that 
occurs. 

b. Calculate the work done.  (Hint:  First, recast the work equation in terms of an integral 
over dP using the definition of compressibility; second, can any of the terms be 
assumed approximately constant during the integration?) 

 
 
 
 
 
 
 
 
 
 

6. Energy storage in polarized materials.  Consider the following two-step process.  TiO2, 
when placed in an electric field parallel to the c-axis of the crystal, exhibits a strong 

polarization due to the high dielectric constant along this crystal direction (εr =
ε
εo

=170 ).  A 1 

cm3 crystal of TiO2 is polarized by placing it in an electric field of 106 Volts/m at constant 
temperature (298K) and volume.  (Assume we can predict the polarization behavior using the 
linear isotropic model, despite the anisotropy in this case.)   

a. What is the work done in polarizing the sample? 

b. If the energy absorbed by the crystal in this process were subsequently converted to 
heat by an adiabatic process within the crystal, will the temperature of the crystal be 
significantly changed? 

 
Data for TiO2: 
 
 MW = 79.88 g/mole 
 

ρ = 4 g/cm3 

 
CP = 67.29 + 0.0187T  J/mole K  (T=200-2000 K) 
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