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1. Electrochemistry.   

a. What voltage is measured across the electrodes of a Zn/Cu Daniell galvanic cell once 
its electrochemical reaction comes to equilibrium? (Show why). 

  The Nernst equation shows that the electrostatic potential on the battery derives from 
the free energy change occurring in the electrochemical reactions: 
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At equilibrium, the free energy change is zero; thus, the potential drops to zero as the reactions 
reach completion. 
 

b. Engel and Reid, problem P11.13. 
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2. Thermodynamics of a car battery.  The standard lead-acid rechargeable battery used 
throughout the automotive industry is shown schematically below.  It consists of a lead and 
lead oxide electrode immersed in aqueous sulfuric acid.  The reactions at each electrode are: 
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 The overall reaction for this galvanic cell is: 
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a. Write an expression for the EMF of the lead acid battery as a function of physical 
constants, temperature, and the activities of components. 

 The EMF is given by the Nernst equation: 
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 Taking the standard approximation for the activities of the solid electrodes, we have: 
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b. The standard potential of the lead-acid battery Eo = 2.09V at 298 K.  If the activity 
coefficient of 0.1 M H2SO4 is 0.0329 and the water present in the sulfuric acid solution 
can be assumed to have an activity ~1, determine the voltage expected across the 
terminals of a battery containing 0.1 M sulfuric acid as the liquid electrolyte. 

From the given information about the electrolyte, we can calculate the activity of the 
sulfuric acid: 

 

! 

XH2SO4 (aq )
=

nH2SO4 (aq )

nH2O
+ nH2SO4 (aq )

=
0.1

1L( )
1000cm

3

L

" 

# 
$ 

% 

& 
' 1

g

cm
3

" 

# 
$ 

% 

& 
' 
mole

18g

" 

# 
$ 

% 

& 
' + 0.1

=1.8 (10)3

aH2SO4 (aq )
= * H2SO4 (aq )

XH2SO4 (aq )
= (0.0329)(1.8 (10)3) = 5.9 (10)5

 

 
 
 

Load

Anode Cathode

H2SO4

e- e-

+

PbO2Pb

Figure by MIT OCW. After Treptow, 2002.
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3. Stability of a closed system at constant temperature and pressure.   

a. Let’s determine the shape of G (Gibbs free energy) vs. P (pressure) curves.  What 

thermodynamic parameter(s) are related to 
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the slope of G vs. P? 

  From the algebraic definition of dG and the combined first/second law form of dG, we 
have: 
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  The matching terms in front of the differential dP give us: 
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  Because volume is always a positive quantity, the slope of G vs. P is positive. 
 

b. Now, what about the curvature of G vs. P: What thermodynamic parameters are 

related to 
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, and what can you say about the curvature of G vs. P, based on 

your knowledge of property requirements for stability?  Draw a qualitative sketch of 
what G vs. P must look like using your information from (a) and (b). 
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where 

! 

"
T
 is the isothermal compressibility.  Because 

! 

"
T
 is always positive for 

stability, the curvature of G vs. P is negative.  Combining these two results, we have 
for G vs. P, qualitatively: 
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c. What are the two inequalities that must be satisfied by the Gibbs free energy for a 
system to be at a stable equilibrium with respect to fluctuations in temperature (all 
other variables held constant) or pressure (all other variables held constant)? 

  To guarantee stable equilibrium, we need: 
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  We know from stability considerations for internal energy that heat capacities are 
positive, and temperature must be positive.  Thus, the second derivative with respect to temperature 
must be negative.  Note that this inequality can be predicted without relying on the prior proof of 
positive Cp values by relating the stability requirements for internal energy to those of Gibbs free 
energy (using Legendre transformation relationships)—this is discussed in the reading from Callen.  
For fluctuations in pressure: 
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…where the inequality is again set by the required positivity of compressibility (as we have already 
shown using internal energy considerations) and volume, or alternatively, by relating the stability 
requirement for Gibbs free energy to the requirements on internal energy via Legendre 
transformation relations. 
 
You may be confused by the requirement that the curvature of the Gibbs free energy with respect to 
temperature is negative, given that we must minimize G for equilibrium.  Recall that we minimize 
Gibbs free energy at constant temperature and pressure: thus, in calculations we are minimizing G 
with respect to other extensive parameters of the system (e.g., moles of a certain component in one 
phase or another).  
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d. For the system to be stable against arbitrary simultaneous fluctuations in both 
temperature and pressure, what inequality must the second derivative of Gibbs free 
energy, d2G satisfy? 

NOTE: Parts (d) and (e) were not graded for credit.  We did not cover in lecture the 
subtlety in determining the sign of the inequality in this problem.  However, here is 
the solution: 
 
We know that under conditions of constant temperature and pressure, the Gibbs free 
energy is minimized.  Minimization would require: 
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Recall that when T and P are constant, the terms we would include in the inequality 
above would be partial derivatives with respect to extensive variables like the number of 
moles of a given component in a given phase– i.e., we minimize the Gibbs free energy 
with respect to the distribution of chemical species among different phases present in the 
system. 
 
Now, considering the general case where fluctuations in temperature or pressure are 
allowed to occur, we have: 
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 …assuming the simple case of a system where n is fixed (no partial derivatives with 
respect to n needed).  This inequality arises because thermodynamic functions are 
always concave functions of their intensive variables, and convex functions (the first 
inequality above) of the extensive variables.  This is determined by the Legendre 
transformation used to change variables from (S,V,n) in internal energy to (T,P,n) in 
Gibbs free energy.  The mathematics of this transformation are discussed in the text by 
Callen. 

 

e. Write out the expression for d2G and show that the stability requirement on d2G is 
equivalent to the condensed expression: 
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 The stability requirement: 
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Multiplying both sides of the inequality by 
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Note the change in direction of the inequality because we have multiplied both sides by a negative 
quantity.  The first term in brackets in this expression is always positive because it is squared.  Thus 
in order to satisfy the inequality, we need only: 
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4. Understanding single-component phase diagrams.  The phase diagram of carbon is 
shown below, along with some physical data for two different forms of carbon, diamond and 
graphite.  Use this data to answer the questions below. 

a. The phase boundary between diamond and graphite at T = 298 K occurs at P = 
14,300 atm.  What is the free energy change to transform 1 mole of graphite to 
diamond at this temperature and pressure? 

At the phase boundary, diamond and graphite are in equilibrium: 
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b. Recall that 
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change occurs.  Calculate the free energy change to transform 1 mole of graphite to 
diamond at 298 K, assuming the volume change in transforming from graphite to 
diamond is approximately independent of pressure at this temperature. 

  The difference in molar volumes of graphite and diamond at 298 K and 1 atm is 
related to the change in free energy with pressure: 
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We can calculate ΔV from the given density data: 
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If ΔV is approximately independent of pressure, then we can rearrange this expression and integrate: 
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We set the free energy change for the transformation at 298K P = 14,300 atm to zero because this 
(T, P) lies on the diamond/graphite phase boundary, indicating that the two phases are in equilibrium 
under these conditions.  Finally: 
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As expected, because the transformation of graphite to diamond is not stable at 1 atm 298 K, the 
free energy change is positive. 
 

c. Using the information provided in the phase diagram, draw a qualitatively correct 
diagram G vs. T of the molar free energies of all relevant phases of carbon at a fixed 
pressure of 1x105 atm over the temperature range 1000-5000 K. 

We approximately determine the positions of the coexistence curves where phase transitions occur: 
 

 
 

Then the free energy vs. T diagram is, qualitatively: 
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Figure by MIT OCW.
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The slopes must increase in the order of diamond < graphite < liquid, in keeping with the steadily 
increasing entropy of higher-temperature phases. 
 

d. Does liquid carbon have a greater molar volume than graphite at the melting point of 
graphite at 1 atm pressure?  Does liquid carbon have a greater molar volume than 
graphite at the melting point of graphite at 100 atm?  Show why. 

As discussed in lecture, the difference in molar volumes between two phases determines the sign on 
the slope of coexistence curves on P vs. T phase diagrams for single component materials, via the 
Clausius-Clapeyron equation: 
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…because the sign on the entropy change at any phase transition moving from the low temperature 
phase to the high temperature phase is positive.  Looking at the phase diagram, the slope dP/dT at 
P =1 atm is positive for the graphite/liquid phase transition, while at P = 100 atm, the slope is 
negative.  Thus, the molar volume of liquid carbon is greater than graphite at 1 atm, but less than 
graphite at the higher pressure. 

 

(Gaskell) 
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Modified from Gaskell, Introduction to Metallurgical Thermodynamics (Hemisphere, New York, 1981) 
Ch. 7 p. 185 

 


