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THERMODYNAMICS 

1.	 Building a binary phase diagram. Given below are data for a binary system of two 
materials A and B. The two components form three phases: an ideal liquid solution, and two 
solid phases α and β that exhibit regular solution behavior. Use the given thermodynamic 
data to answer the questions below. 
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a.	 Plot the free energy of L, alpha, and beta phases (overlaid on one plot) vs. XB at the 
following temperatures: 2000K, 1500K, 1000K, 925K, and 800K. For each plot, denote 
common tangents and drop vertical lines below the plot to a ‘composition bar’, as 
illustrated in the example plot below. For each graph, mark the stable phases as a 
function of XB in the composition bar below the graph, as illustrated in the example. 
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EXAMPLE: 
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b.	 Using the free energy curves prepared in part (a), construct a qualitatively correct phase 
diagram for this system in the temperature range 800K – 2000K. Mark the invariant 
points on the diagram with a filled circle. 
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2.	 Analyzing stable equilibria with binary phase diagrams. Shown below is the phase 
diagram for the binary system MgO-Al2O3 at P = 1 atm. Use the diagram to answer the 
questions below. 

a.	 At T = 1750°C (broken line marked on diagram), what is the makeup of the system 
(what phases are present, what is the phase fraction of each phase, and what is the 
composition for each phase) at XAl2O3 = 0.2 and XAl2O3 = 0.6? 

At : XAl2O3 = 0.2: 

Phases present: periclase SS and spinel solid phases (determined by the location on the 
phase diagram) 

Compositions: periclase: XAl2O3 = XA ~ 0.05 
Spinel: X
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Al2O3 = XC ~ 0.45 

Phase fractions: periclase: 

Spinel: 

At : XAl2O3 = 0.6: 

Phases present: spinel solid phase (determined by the location on the phase diagram)

Compositions: Spinel:

Phase fractions: Spinel:


b. Mark the invariant points on the diagram and label the type of each.


XAl

! 

f
spinel

=1
2O3 = 0.6 

There are 5 invariant points on the diagram, as marked below- 2 eutectics and 3 congruent melting 
points (including the melting points of the pure compounds). 

c.	 Draw a qualitatively reasonable diagram of the molar free energy of each phase vs. 
XAl2O3 for T = 1750°C (overlay all of the curves on the same diagram). Mark the 
common tangents with a dashed line. 
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Figure by MIT OCW. 

(Kingery, W. D., Bowen, H. K. & Uhlmann, D. R. Introduction to Ceramics (John Wiley, New York, 1976).) 
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3.	 The structure of phase diagrams is not arbitrary. Given below are two hypothetical 
structures for binary phase diagrams. Using sketches of Gibbs free energy curves vs. 
composition and/or a few brief sentences, explain why each of the proposed phase diagram 
structures is impossible. 

a.	 A solid phase alpha has a continuous boundary with liquid and no intervening two-phase 
(α + L) region: 

This phase diagram asks the question: why can’t a congruent phase transition occur across a range 
of compositions in a binary system? Why must congruent transitions occur at a single point in 
composition space? As shown in the qualitative diagrams below, a congruent transition requires that 
the free energy curves of alpha phase and liquid have a single point in common and no common 
tangent; further, they must have a single point in common with no common tangent across a range 
of temperatures. Thus, as illustrated below, the free energy curves would have to shift with 
temperature perfectly in sync with one another. This is impossible since the liquid (high temperature 
stable phase) must have a greater entropy than the alpha phase (the low temperature stable phase)-
- and thus the liquid curve must shift more rapidly with temperature than the alpha phase. 
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b. A diagram with a broad boundary between liquid and phase-separated α/β solids: 

T’ 
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The phase diagram shown, where at one temperature (T’) α + L and β + L flank a liquid-only region, 
and immediately below T’ the equilibrium across this same region transforms to α + β only, requires 
free energy curves as illustrated below (A) and (B). However, because the free energies must move 
in a continuous manner (recall the shape of G vs. T), the curves cannot move from (A) to (B) without 
passing through an intermediate temperature where a common tangent across all three phases 
occurs at a single point (C)— a eutectic point. 
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4. Metastable and unstable systems. Consider a regular solution with the following 
thermodynamic parameters: 
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(Assume the standard state chemical potentials are approximately constant for this 
calculation.) 

a.	 For a solution with a mole fraction B of 0.3 being cooled from elevated temperatures, at 
what temperature would phase separation first be observed (supposing the system is 
constantly re-equilibrating as the temperature is dropped)? Hint: Your calculation is 
simplified by the fact that miscibility gap of simple regular solutions is symmetric about XB 
= 0.5. 

Phase separation first occurs when the binodal (phase boundary) of the miscibility gap is crossed. 
Qualitatively: 

How do we identify the temperature at which this boundary sits for a solution with mole fraction B of 
0.3? Because the system is a regular solution, the miscibility gap forms when the free energy 
assumes a common tangent with itself. The binodal lies at the compositions found at either end of 
the common tangent: 
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Thus, to find the binodal, we want to solve for the temperature at which the regular solution has a 
common tangent with itself, where one end of the common tangent is located at XB = 0.3. Because, 
as hinted in the problem, the regular solution’s shape is symmetric, the other end of the common 
tangent must lie at a composition symmetric to 0.3 about the central composition of XB = 0.5—XB = 
0.7. Knowing the compositions we want, the common tangent is identified as the point where the 
slope of the free energy curve is the same at XB = 0.3 and XB = 0.7: 
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From lecture, we know that the regular solution free energy in terms of XB is given by: 
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Taking the first derivative with respect to XB: 
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Simplifying the expression and solving for T, we find Tbinodal = 482 K. A plot of the free energy of the 
solution and the common tangent are shown below. 

Note that as seen in the graphical view above, the common tangent formed for the regular solution 
free energy curve here does 
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not connect two global (or even local) minima in the free energy-- i.e., 

the first derivative . We are however forming a common tangent between two 
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minima in the free energy of mixing: 
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free energy of mixing plot shown below for the same system shown above. Why are the two plots 
different? The free energy of mix
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ostandard state conditions, and , while these two terms provide the ‘cant’ to the free energy of 
solution curve. Why would an equilibrium phase separated state (identified by the common tangent 
on the free energy plot above) be comprised of two phases with free energies that are not local or 
global minima with respect to composition? Answer: Because the composition is not free to 
move arbitrarily in a closed system. For a sample with a composition between the ends of the 
common tangent (e.g., XB = 0.5), if the system phase separates to lower its free energy, it must do 
so while maintaining a total composition of XB = 0.5—because the only physical event occurring in 
this process is rearrangement of A and B molecules into the two separate phases. The net amount 
of A and B in the whole system must remain constant. Under this constraint, the lowest free energy 
achievable derives from a linear mixture of two phases with compositions denoted by the ends of the 
common tangent. Note that the common tangent satisfies the requirement that the chemical 
potentials of A and B are the same in each phase. 
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b.	 The mode of phase separation in a system (nucleation and growth vs. spinodal 
decomposition) can be controlled by quenching (rapidly cooling) a system from a 
homogeneous high-temperature state to a temperature where one mode of phase 
separation or the other will be operable. What is the lowest temperature that this solution 
with a mole fraction B of 0.3 could be quenched to and still phase separate by a 
nucleation and growth mechanism? 

The nucleation and growth mechanism of phase separation occurs in the region of the phase 
diagram between the binodal and spinodal boundaries: 

At XB = 0.3, T’ in the above diagram is the minimum temperature where the system can be quenched 
to obtain nucleation and growth; below this temperature spinodal decomposition will be favored. 
This minimum temperature coincides with the location of the spinodal boundary. To determine T’ for 
this particular composition, we solve for the location of the spinodal: the temperature where the 
second derivative of the free energy goes to zero. The spinodals are defined by the saddle points in 
the ‘hump’ of the regular solution free energy curve. We determined the first derivative of G with 
respect to XB above. The second derivative is: 
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5. Peritectic phase diagrams. Use the given phase diagram for the binary system of copper 
and cobalt to answer the questions below. 
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Figure by MIT OCW. 

(Lupis, C. H. P. Chemical Thermodynamics of Materials (Prentice-Hall, New York, 1983) 

a.	 Draw a reasonable set of free energy curves for each phase of the Cu-Co system at 
1400°C, the peritectic temperature of 1385°C, and just below the peritectic at 1350°C. 
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Note that the highly off-center shapes of the minima in these free energy curves often occur because 
the phases of the system exhibit regular solution behavior (i.e., the minima are one of the two ‘wells’ 
of the free energy of a regular solution below its critical temperature)—examples of such free energy 
curves are shown in your reading from the text by Lupis on binary phase diagrams. 

b.	 Suppose a solution with 50 mole% Cu were cooled to 1400°C and equilibrated, then 
further cooled to 1200°C. How much “primary” β-Co phase would be present in the 
final sample (mole fraction)? How much total β-Co phase would be present in the 
final sample (mole fraction)? 

The total amount of β-Co phase present at 1200°C Is determined from applying the lever rule to a tie 
line connecting the phase boundaries at this temperature: 
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Figure by MIT OCW. 
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The amount of ‘primary’ β-Co is a more subtle question: Note that as the sample is cooled from high 
temperature to the peritectic temperature, the amount of ‘primary’ β-Co—that portion which formed 
during the first solidification in the L + β-Co two-phase field is actually reduced: part of the primary β-
Co is consumed (along with all of the liquid) to form the solid Cu phase at the peritectic temperature. 
Once cooled past the peritectic, the amount of β-Co only changes very slowly and slightly 
(according to the gently sloping boundaries on either side of the two-phase β-Co + Cu field. Thus to 
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first order, we could consider all of the β-Co remaining at 1200°C to be ‘primary’ material originally 
formed during the initial solidification above the peritectic temperature. 
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