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Content overview

I. Particle and continuum methods
1. Atoms, molecules, chemistry
2. Continuum modeling approaches and solution approaches 
3. Statistical mechanics
4. Molecular dynamics, Monte Carlo
5. Visualization and data analysis 
6. Mechanical properties – application: how things fail (and 

how to prevent it)
7. Multi-scale modeling paradigm
8. Biological systems (simulation in biophysics) – how 

proteins work and how to model them

II. Quantum mechanical methods
1. It’s A Quantum World: The Theory of Quantum Mechanics
2. Quantum Mechanics: Practice Makes Perfect
3. The Many-Body Problem: From Many-Body to Single-

Particle
4. Quantum modeling of materials
5. From Atoms to Solids
6. Basic properties of materials
7. Advanced properties of materials
8. What else can we do? 

Lectures 2-13

Lectures 14-26
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Lecture 3: Property calculation I

Outline:
1. Atomistic model of diffusion 
2. Computing power: A perspective
3. How to calculate properties from atomistic simulation

3.1 Thermodynamical ensembles: Micro and macro
3.2 How to calculate properties from atomistic simulation
3.3 How to solve the equations
3.4 Ergodic hypothesis

Goal of today’s lecture: 
Exploit Mean Square Displacement function to identify diffusivity, as well 
as material state & structure
Provide rigorous basis for property calculation from molecular dynamics 
simulation results (statistical mechanics)
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Additional Reading

Books:

M.J. Buehler (2008): “Atomistic Modeling of Materials Failure”
Allen and Tildesley: “Computer simulation of liquids” (classic)
D. C. Rapaport (1996): “The Art of Molecular Dynamics Simulation”
D. Frenkel, B. Smit (2001): “Understanding Molecular Simulation”
J.M. Haile (Wiley, 1992), “Molecular dynamics simulation”
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1. Atomistic model of diffusion

How to build an atomistic bottom-up model to 
describe the physical phenomena of diffusion?

Introduce: Mean Square Displacement 
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Recall: Diffusion

Particles move from a domain with high concentration to an area of 
low concentration

Macroscopically, diffusion measured by change in concentration 

Microscopically, diffusion is process of spontaneous net movement 
of particles 

Result of random motion of particles (“Brownian motion”)

High
concentration

Low
concentration

c = m/V = c(x, t)
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Ink droplet in water

hot cold
© source unknown. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse
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Atomistic description

Back to the application of diffusion problem…

Atomistic description provides alternative way to predict D
Simple solve equation of motion
Follow the trajectory of an atom
Relate the average distance as function of time from initial point to 
diffusivity

Goal:  Calculate how particles move “randomly”, away from 
initial position
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Pseudocode
Set particle positions (e.g. crystal lattice)

Assign initial velocities

For (all time steps):
Calculate force on each particle (subroutine)
Move particle by time step Δt
Save particle position, velocity, 
acceleration

Save results

Stop simulation

...)()()(2)( 2
0000 +Δ+Δ−−=Δ+ ttattrtrttr iiii

Positions 
at t0-Δt

Accelerations
at t0

Positions 
at t0

mfa ii /=
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JAVA applet

URL  http://polymer.bu.edu/java/java/LJ/index.html

Courtesy of the Center for Polymer Studies at Boston University. Used with 
permission.

http://polymer.bu.edu/java/java/LJ/index.html
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Link atomistic trajectory with diffusion constant (1D)

t
xpD
Δ
Δ

=
2

Idea – Use MD simulation to measure square of displacement from initial 
position of particles,              :    )(2 trΔ

2xΔ

time

Diffusion constant relates to the “ability” of a particle to move a distance Δx2 

(from left to right) over a time Δt

( ) ( ) ( )[ ]∑∑ =−⋅=−==−=Δ
i

iiii
i

ii trtrtrtr
N

trtr
N

tr )0()()0()(1)0()(1)( 22

scalar product
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Link atomistic trajectory with diffusion constant (1D)

MD simulation: Measure square of displacement from initial position 
of particles,            :)(2 trΔ

Diffusion constant relates to the “ability” of a particle to move a distance Δx2 

(from left to right) over a time Δt

2rΔ

t

t
xpD
Δ
Δ

=
2

2xΔ

( )22 )0()(1)( ∑ =−=Δ
i

ii trtr
N

tr
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Link atomistic trajectory with diffusion constant (1D)

t
xpD
Δ
Δ

=
2

Replace 

t
rD
Δ
Δ

=
2

2
1

MD simulation: Measure square of displacement from initial position 
of particles,             and not               ….

Factor 1/2 = no directionality in (equal 
probability to move forth or back)

)(2 trΔ

2xΔ

2rΔ

)(2 txΔ

t
xpD
Δ
Δ

=
2

Diffusion constant relates to the “ability” of a particle to move a distance Δx2 

(from left to right) over a time Δt
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Link atomistic trajectory with diffusion constant (1D)

MD simulation: Measure square of displacement from initial position 
of particles,            :)(2 trΔ

Dtr 22 =Δ

2rΔ

t

t
rD

2

2Δ
= tR ~
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Link atomistic trajectory with diffusion constant (2D/3D)

t
xpD
Δ
Δ

=
2

t
r

d
D

Δ
Δ

=
21

2
1 Factor 1/2 = no directionality in  (forth/back)

Factor d = 1, 2, or 3 due to 1D, 2D, 3D
(dimensionality)

2~2 rtdD ΔΔ
Since:

22 rCtdD Δ=+Δ C = constant (does not affect D)

Higher dimensions
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Example: MD simulation

2rΔ
1D=1, 2D=2, 3D=3

slope = D
( )2

d
dlim

2
1 r

td
D

t
Δ=

∞→

2

d
dlim

2
1 r

td
D

t
Δ=

∞→

.. = average over all particles

Courtesy of Sid Yip. Used with permission.

Mean Square 
Displacement function

C
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Example molecular dynamics

2rΔ

Average square of 
displacement of all 
particles

( )22 )0()(1)( ∑ =−=Δ
i

ii trtr
N

tr

Particles Trajectories

Mean Square 
Displacement function

Courtesy of the Center for Polymer Studies at Boston University. Used with permission.
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2rΔ

Example calculation of diffusion coefficient

1D=1, 2D=2, 3D=3

slope = D

( )22 )0()(1)( ∑ =−=Δ
i

ii trtr
N

tr

Position of 
atom i at time t

Position of 
atom i at time t=0

2

d
dlim

2
1 r

td
D

t
Δ=

∞→
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Quantum
mechanics

Summary
Molecular dynamics provides a powerful approach to relate the 
diffusion constant that appears in continuum models to atomistic
trajectories

Outlines multi-scale approach: Feed parameters from atomistic 
simulations to continuum models

MD

Continuum
model

Length scale

Time scale
“Empirical”
or experimental
parameter
feeding
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Quantum
mechanics

Summary
Molecular dynamics provides a powerful approach to relate the 
diffusion constant that appears in continuum models to atomistic
trajectories

Outlines multi-scale approach: Feed parameters from atomistic 
simulations to continuum models

MD

Continuum
model

Length scale

Time scale
“Empirical”
or experimental
parameter
feeding
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MD modeling of crystals – solid, liquid, gas phase

Crystals:  Regular, ordered 
structure

The corresponding particle 
motions are small-amplitude 
vibrations about the lattice site, 
diffusive movements over a local 
region, and long free flights 
interrupted by a collision every 
now and then.

Liquids: Particles follow Brownian 
motion (collisions)

Gas: Very long free paths
Image by MIT OpenCourseWare. After J. A. Barker and D. Henderson.



22

Example: MD simulation results

liquid solid

Courtesy of Sid Yip. Used with permission.

solid
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Atomistic trajectory

Courtesy of Sid Yip. Used with permission.
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Multi-scale simulation paradigm

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

http://www.sciencedirect.com/
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2. Computing power: A perspective
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Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

http://www.sciencedirect.com/
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Historical development of computer simulation

Began as tool to exploit computing machines developed during World 
War II

MANIAC (1952) at Los Alamos used for computer simulations 
Metropolis, Rosenbluth, Teller (1953): Metropolis Monte Carlo method
Alder and Wainwright (Livermore National Lab, 1956/1957): dynamics 
of hard spheres
Vineyard (Brookhaven 1959-60): dynamics of radiation damage in 
copper
Rahman (Argonne 1964): liquid argon
Application to more complex fluids (e.g. water) in 1970s
Car and Parrinello (1985 and following): ab-initio MD

Since 1980s: Many applications, including:
Karplus, Goddard et al.: Applications to polymers/biopolymers, 
proteins since 1980s
Applications to fracture since mid 1990s to 2000
Other engineering applications (nanotechnology, e.g. CNTs, 
nanowires etc.) since mid 1990s-2000
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3. How to calculate properties from 
atomistic simulation

A brief introduction to statistical 
mechanics
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Molecular dynamics

Follow trajectories of atoms
(classical mechanics, 
Newton’s laws)

( ) ...)()(2)()( 2
0000 +Δ+Δ+Δ−−=Δ+ ttattrttrttr iiii

“Verlet central difference method”

Positions 
at t0

Accelerations
at t0

Positions 
at t0-Δt

mfa ii /=
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Property calculation: Introduction
Have:

“microscopic information”

Want:  
Thermodynamical properties (temperature, 
pressure, stress, strain, thermal conductivity, ..)
State (gas, liquid, solid)
…

(properties that can be measured in experiment!)

)(),(),( txtxtx
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Goal: To develop a robust framework to 
calculate a range of “macroscale” properties 
from MD simulation studies (“microscale 
information”)
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3.1 Thermodynamical ensembles: Micro 
and macro
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Macroscopic vs. microscopic states

NVpT ,,,

≡

…

1C

2C

3C

NC
Same macroscopic state is represented by many different 

microscopic configurations Ci
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Definition: Ensemble
Large number of copies of a system with specific 
features

Each copy represents a possible microscopic state a 
macroscopic system might be in under thermodynamical 
constraints (T, p, V, N ..)

Gibbs, 1878
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Microscopic states

Microscopic states characterized by pr,

{ } { }iii xmpxr == , Ni ..1=

ip

=
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Microscopic states

Microscopic states characterized by pr,

{ } { }iii xmpxr == , Ni ..1=

Hamiltonian (sum of potential and kinetic energy = total energy)
expressed in terms of these variables

)()(),( pKrUprH +=

∑
=

=
Ni

i rrU
..1

)()( φ ∑
=

=
Ni i

i

m
ppK

..1

2

2
1)(

ip

=

2

2
1

iii vmK =
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Ensembles
Result of thermodynamical constraints, e.g. temperature, 
pressure…

Microcanonical
Canonical
Isobaric-isothermal
Grand canonical

NVE

NpT
μTV

NVT

μ chemical potential (e.g. 
concentration)
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3.2 How to calculate properties from 
atomistic simulation
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Link between statistical mechanics and thermodynamics

Microscopic
(atoms)

Macroscopic
(thermodynamics)

?????
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Link between statistical mechanics and thermodynamics

Microscopic
(atoms)

Macroscopic
(thermodynamics)

Statistical
mechanics

Macroscopic conditions (e.g. constant volume, temperature, number of 
particles…) translate to the microscopic system as boundary conditions 
(constraints)

Macroscopic system: defined by extensive variables, which are constant: 
E.g. (N,V,E)=NVE ensemble
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Link between statistical mechanics and thermodynamics

Microscopic
(atoms)

Macroscopic
(thermodynamics)

Statistical
mechanics

Macroscopic conditions (e.g. constant volume, temperature, number of 
particles…) translate to the microscopic system as boundary conditions 
(constraints)

Macroscopic system: defined by extensive variables, which are constant: 
E.g. (N,V,E)=NVE ensemble

The behavior of the microscopic system is related to the macroscopic 
conditions. In other words, the distribution of microscopic states is related to 
the macroscopic conditions. 

To calculate macroscopic properties (via statistical mechanics) from 
microscopic information we need to know the distribution of microscopic 
states (e.g. through a simulation)
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Example: Physical realization of canonical 
ensemble (NVT)

Heat bath (constant temperature)
Coupled to large system, allow energy exchange

NVT

Constant number of particles = N
Constant volume = V
Constant temperature = T

“small” system embedded in “large” heat bath
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Macroscopic vs. microscopic states

TVN ,,

≡

…

1C

2C

3C

NC
Same macroscopic state is represented by many different 

microscopic configurations

NN pr ,

Canonical ensemble 11, pr

22 , pr

33, pr
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Important issue to remember…

A few slides ago: 

“To calculate macroscopic properties (via statistical 
mechanics) from microscopic information we need to 
know the distribution of microscopic states (e.g. through 
MD  simulation)”

Therefore: 

We can not (“never”) take a single measurement 
from a single microscopic state to relate to 
macroscopic properties
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Micro-macro relation

)(1
3
1)(

1

2 tvm
Nk

tT
N

i
ii

B
∑
=

=

)(tT

t

Which to pick?

Specific (individual) microscopic states are insufficient to relate to 
macroscopic properties

Courtesy of the Center for Polymer Studies at Boston University. Used with permission.
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Averaging over the ensemble

Rather than taking single measurement, need to average over “all”
microscopic states that represent the corresponding macroscopic condition

This averaging needs to be done in a suitable fashion, that is, we need to 
consider the specific distribution of microscopic states (e.g. some 
microscopic states may be more likely than others)

What about trying this….

1C 2C 3C

Property A1 Property A2 Property A3

( )321macro 3
1 AAAA ++=

11, pr 22 , pr 33, pr
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Averaging over the ensemble

Rather than taking single measurement, need to average over “all”
microscopic states that represent the corresponding macroscopic condition

This averaging needs to be done in a suitable fashion, that is, we need to 
consider the specific distribution of microscopic states (e.g. some 
microscopic states may be more likely than others)

What about trying this….

1C 2C 3C

Property A1 Property A2 Property A3

( )321macro 3
1 AAAA ++=

Generally, NO!
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Averaging over the ensemble

1C 2C 3C

Property A1 Property A2 Property A3

( )321macro 3
1 AAAA ++=

Instead, we must average with proper weights that represent the probability 
of a system in a particular microscopic state! 

(I.e., not all microscopic states are equal)

),(),(),(),(),(),( 333333222222111111

332211macro

prAprprAprprApr
AAAA

ρρρ
ρρρ

++
=++=

Probability to find system in state C1
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How to relate microscopic states to 
macroscopic variables?

),( prA Property due to specific microstate

drdprprpAA
p r
∫ ∫>=< ),(),( ρ

• Ensemble average, obtained by integral over all microscopic 
states

• Proper weight                  - depends on ensemble ),( rpρ
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How to relate microscopic states to 
macroscopic variables?

),( prA Property due to specific microstate

To measure an observable quantity from MD simulation we 
must express this observable as a function of the positions 
and linear momenta of the particles in the system, that is, r, p

Recall, microscopic states characterized by pr,

{ } { }iii xmpxr == , Ni ..1=

ip

=



51

How to relate microscopic states to 
macroscopic variables?

drdprprpAA
p r
∫ ∫>=< ),(),( ρ

⎥
⎦

⎤
⎢
⎣

⎡
−=

Tk
rpH

Q
rp

B

),(exp1),(ρ

12223 Kskgm101.3806503 −−−×=   Bk
Boltzmann constant

drdp
Tk

rpHQ
p r B
∫ ∫ ⎥

⎦

⎤
⎢
⎣

⎡
−=

),(exp

Partition function

Probability density distribution

Probability to find system
in state (p,r)
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Illustration/example: phase space

6N-dimensional
phase space

pr,

),( rpρ

Image removed due to copyright restrictions. See the second image 
at http://www.ace.gatech.edu/experiments2/2413/lorenz/fall02/. 

http://www.ace.gatech.edu/experiments2/2413/lorenz/fall02/
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Definition of temperature

Classical (mechanics) many-body system: 

Average kinetic energy per degree of freedom is related to 
temperature via Boltzmann constant:

Tkvm
N

vm B
Ni

i
f

i
f

2
1

2
11

2
1

..1

22 =⎟
⎠
⎞

⎜
⎝
⎛= ∑

=

# DOF

NN f 3=

# particles (each 3 DOF for velocities)

Based on equipartition theorem (energy distributed equally over all DOFs)   
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Definition of temperature

)(1
3
1)(

1

22

pA
m

vm
Nk

pT
N

i i

ii

B

== ∑
=

Temperature

ip=

Tkvm
N

vm B
Ni

i
f

i
f

2
1

2
11

2
1

..1

22 =⎟
⎠
⎞

⎜
⎝
⎛= ∑

=

# DOF

NN f 3=

Classical (mechanics) many-body system: 

Average kinetic energy per degree of freedom is related to 
temperature via Boltzmann constant:
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How to calculate temperature 

drdprp
m

vm
Nk

T
p r

N

i i

ii

B
∫ ∫ ∑

=

>=< ),(1
3
1

1

22

ρ

???
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How to solve…

drdprprpAA
p r
∫ ∫>=< ),(),( ρ

Virtually impossible to carry out analytically

Must know all possible microscopic configurations 
corresponding to a macroscopic ensemble, then calculate ρ

Therefore: Require numerical simulation (the only feasible 
approach…)
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Summary: How macro-micro relation works

Microscopic
(atomic configurations)

Macroscopic
(thermodynamical 

ensemble)Statistical
mechanics

drdprprpAA
p r
∫ ∫>=< ),(),( ρ

defines…

A >< A

microscopic A (single point measurement)
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3.3 How to solve the equations
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Approaches in solving this problem

Method of choice: Numerical simulation

Two major approaches:

1. Using molecular dynamics (MD): Generate 
microscopic information through dynamical evolution of 
microscopic system (i.e., simulate the “real behavior” as 
we would obtain in lab experiment)

2. Using a numerical scheme/algorithm to randomly 
generate microscopic states, which, through proper 
averaging, can be used to compute macroscopic 
properties. Methods referred to as “Monte Carlo”
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Monte Carlo (MC) scheme

Concept: Find simpler way to solve the integral

Use idea of “random walk” to step through relevant 
microscopic states and thereby create proper weighting 
(visit states with higher probability density more often)

drdprprpAA
p r
∫ ∫>=< ),(),( ρ

=ensemble (statistical) average
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MC algorithm result

drdprprpAA
p r
∫ ∫>=< ),(),( ρ ∑><

i
i

A

A
N

A 1

Final result of MC algorithm:
Algorithm that leads to proper
Distribution of microscopic states…

Carry out algorithm
for NA steps
Average results
..done!

Ensemble 
(statistical) 
average
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3.4 Ergodic hypothesis
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Ergodicity

MC method is based on directly computing the ensemble average

Define a series of microscopic states that reflect the appropriate 
ensemble average; weights intrinsically captured since states more 
likely are visited more frequently and vice versa

Egodicity: The ensemble average is equal to the time-average during 
the dynamical evolution of  a system under proper thermodynamical 
conditions. 

In other words, the set of microscopic states generated by solving the 
equations of motion in MD “automatically” generates the proper 
distribution/weights of the microscopic states

This is called the Ergodic hypothesis:

TimeEns AA >=<><
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Ergodic hypothesis

Ergodic hypothesis:

Ensemble (statistical) average = time average

All microstates are sampled with appropriate probability 
density over long time scales

∑∑
==

=>=<>=<
tA Nit

TimeEns
NiA

iA
N

AAiA
N ..1..1

)(1)(1

MC MD
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Ergodic hypothesis

Ergodic hypothesis:

Ensemble (statistical) average = time average

All microstates are sampled with appropriate probability 
density over long time scales

∑ ∑∑ ∑
= == =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=>=<>=<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

tA Ni

N

i
ii

Bt
TimeEns

Ni

N

i
ii

BA

vm
NkN

AAvm
NkN ..1 1

2

..1 1

2 1
3
111

3
11

MC MD
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Importance for MD algorithm

Follow trajectories of atoms
(classical mechanics, 
Newton’s laws)

( ) ...)()(2)()( 2
0000 +Δ+Δ+Δ−−=Δ+ ttattrttrttr iiii

“Verlet central difference method”

Positions 
at t0

Accelerations
at t0

Positions 
at t0-Δt

mfa ii /=

∑
=

=><
tNit

Time iA
N

A
..1

)(1It’s sufficient to simply
average over all MD steps…
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Molecular dynamics

During integration of equations of motion – must impose 
thermodynamical constraints

For example, Verlet central difference method leads to a 
microcanonical ensemble (NVE)

Other integration methods exist to generate NVT, NpT
ensembles etc.

( ) ...)()(2)()( 2
0000 +Δ+Δ+Δ−−=Δ+ ttattrttrttr iiii

Positions 
at t0

Accelerations
at t0

Positions 
at t0-Δt

mfa ii /=
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