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Content overview

I. Particle and continuum methods
1. Atoms, molecules, chemistry
2. Continuum modeling approaches and solution approaches 
3. Statistical mechanics
4. Molecular dynamics, Monte Carlo
5. Visualization and data analysis 
6. Mechanical properties – application: how things fail (and 

how to prevent it)
7. Multi-scale modeling paradigm
8. Biological systems (simulation in biophysics) – how 

proteins work and how to model them

II. Quantum mechanical methods
1. It’s A Quantum World: The Theory of Quantum Mechanics
2. Quantum Mechanics: Practice Makes Perfect
3. The Many-Body Problem: From Many-Body to Single-

Particle
4. Quantum modeling of materials
5. From Atoms to Solids
6. Basic properties of materials
7. Advanced properties of materials
8. What else can we do? 

Lectures 1-13

Lectures 14-26
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Overview: Material covered so far…
Lecture 1: Broad introduction to IM/S

Lecture 2: Introduction to atomistic and continuum 
modeling (multi-scale modeling paradigm, difference 
between continuum and atomistic approach, case study: 
diffusion)

Lecture 3: Basic statistical mechanics – property 
calculation I (property calculation: microscopic states vs. 
macroscopic properties, ensembles, probability density and 
partition function)

Lecture 4: Property calculation II (advanced property 
calculation, introduction to chemical interactions, Monte Carlo 
method)

Lecture 5: How to model chemical interactions 
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Lecture 5: How to model chemical interactions

Outline:
1. Monte-Carlo (MC) approach: Metropolis-Hastings algorithm
2. How to model chemical interactions

2.1 Pair potentials
2.2 How to model metals: Multi-body potentials

Goals of today’s lecture: 
Get to know basic methods to model chemical bonds (starting 
with simple “pair potentials”)
Learn how to identify parameters for models of chemical bonds 
(for pair potentials)
Limitations of pair potentials – and other, alternative methods
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1. Monte-Carlo (MC) approach: 
Metropolis-Hastings algorithm
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Averaging over the ensemble

1C 2C 3C

Property A1 Property A2 Property A3

( )321macro 3
1 AAAA ++=
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Averaging over the ensemble

1C 2C 3C

Property A1 Property A2 Property A3

( )321macro 3
1 AAAA ++=

Instead, we must average with proper weights that represent the probability 
of a system in a particular microscopic state! 

(I.e., not all microscopic states are equal)
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Probability to find system in state C1
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How to solve…

drdprprpAA
p r
∫ ∫>=< ),(),( ρ

Probability density distribution

Virtually impossible to carry out analytically

Must know all possible configurations

Therefore: Require numerical simulation

Molecular dynamics OR Monte Carlo

E.g.:
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Monte Carlo scheme

∫
Ω

Ω= dxfA )(

Method to carry out integration over “domain”

Want:

E.g.: Area of circle (=π/4 
exact solution)
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Monte Carlo scheme for integration

Step 1: Pick random point        in 
Step 2: Accept/reject point based on criterion (e.g. if 
inside or outside of circle and if in area not yet counted)
Step 3: If accepted, add 
to the total sum

Ω

1)( =ixf

ix

∫
Ω

Ω= dxfAC )(

∑=
i

i
A

C xf
N

A )(1

AN :  Attempts
made

16
π

=CA

2/1

2/1
Courtesy of John H. Mathews. Used with permission.
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Similar method can be used to apply to integrate the 
ensemble average

To be computationally more effective, need more complex 
iteration scheme (replace “random sampling” by “importance 
sampling”)

How to apply to ensemble average?
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“discrete”

Computationally inefficient: If states 
are created “randomly” that have low 
probability….
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Challenge: sampling specific types of 
distributions

We want to
Integrate a sharply-peaked 
function
Use Monte Carlo with 
uniformly-distributed 
random numbers (e.g. here 
from -1 to 1)

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

( ) ( )( )12exp 100f x x= −

Random numbers
drawn from here

∫−
=

1

1
)( dxxfA
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Challenge: sampling specific types of 
distributions

We want to
Integrate a sharply-peaked 
function
Use Monte Carlo with 
uniformly-distributed 
random numbers (e.g. here 
from -1 to 1)

What happens?
Very few points contribute 
to the integral (~9%)
Poor computational 
efficiency/convergence

Solution: use a different 
distribution of random 
numbers to sample 
“importance sampling”

-1 -0.5 0.5 1

0.2

0.4

0.6

0.8

1

Random numbers
drawn from here

( ) ( )( )12exp 100f x x= −

∫−
=

1

1
)( dxxfA
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Importance sampling

Core concept: Picking states with a biased probability: 
Importance sampling (sampling the “correct” way…)
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⎦
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Importance sampling

Core concept: Picking states with a biased probability: 
Importance sampling (sampling the “correct” way…)
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Notice: Probability (and thus importance)
related to energy of state
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Importance sampling: Metropolis algorithm

Leads to an appropriate “chain” of states, visiting each state 
with correct probability

Concept:

Pick random initial state
Move to trial states
Accept trial state with certain probability (based on 
knowledge about behavior of system, i.e., energy states)

Original reference: J. Chem. Phys. 21,1087, 1953 
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Metropolis-Hastings Algorithm

State A State B

Random move to 
new state B

Concept: Generate set of random microscopic configurations
Accept or reject with certain scheme
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Have: State A (initial state) + energy function H(A)

Step 1: Generate new state B (random move)

Step 2: if  H(B)<H(A) then a = 1

else

Draw random number 0 < p < 1

if                                                     a = 1

else

a = 0

endif

endif

Step 3: if  a = 1 then accept state B

endif 

Metropolis-Hastings Algorithm: NVT

∑
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)()(exp

a = true/false
for acceptance 

“Downhill” moves always accepted, uphill moves
with finite (“thermal”) probability

a=variable either 0 or 1
(used to detect acceptance
of state B when a=1)
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Have: State A (initial state) + energy function H(A)

Step 1: Generate new state B (random move)

Step 2: if  H(B)<H(A) then a = 1

else

Draw random number 0 < p < 1

if                                                     a = 1

else

a = 0

endif

endif

Step 3: if  a = 1 then accept state B

endif 

Metropolis-Hastings Algorithm: NVT
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a = true[1]/false[0]
for acceptance 

“Downhill” moves always accepted, uphill moves
with finite (“thermal”) probability

a=variable either 0 or 1
(used to detect acceptance
of state B when a=1)

“Downhill” moves 
always accepted
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Have: State A (initial state) + energy function H(A)

Step 1: Generate new state B (random move)

Step 2: if  H(B)<H(A) then a = 1

else

Draw random number 0 < p < 1

if                                                     a = 1

else

a = 0

endif

endif

Step 3: if  a = 1 then accept state B

endif 

Metropolis-Hastings Algorithm: NVT
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“Downhill” moves always accepted, uphill moves
with finite (“thermal”) probability

a=variable either 0 or 1

of state B when a=1)

“Downhill” moves 
always accepted, 
uphill moves
with finite 
(“thermal”) 
probability

a = true[1]/false[0]
for acceptance 
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Have: State A (initial state) + energy function H(A)

Step 1: Generate new state B (random move)

Step 2: if  H(B)<H(A) then a = 1

else

Draw random number 0 < p < 1

if                                                     a = 1

else

a = 0

endif

endif

Step 3: if  a = 1 then accept state B

endif 

Metropolis-Hastings Algorithm: NVT
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⎦
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a=variable either 0 or 1
(used to detect acceptance
of state B when a=1)

a = true[1]/false[0]
for acceptance 
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Have: State A (initial state) + energy function H(A)

Step 1: Generate new state B (random move)

Step 2: if  H(B)<H(A) then a = 1

else

Draw random number 0 < p < 1

if                                                     a = 1

else

a = 0

endif

endif

Step 3: if  a = 1 then accept state B

endif 

repeat       times

Metropolis-Hastings Algorithm: NVT
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a=variable either 0 or 1
(used to detect acceptance
of state B when a=1)

a = true[1]/false[0]
for acceptance 
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Arrhenius law - explanation

E

)()( AHBH −

iteration

)(AH

)(BH

)()( AHBH >

Consider two states, A and B

A B

State B has higher energy than state A

Otherwise accepted anyway!
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Arrhenius law - explanation

E

)()( AHBH −

iteration

)(AH

)(BH
)()( AHBH >

E

)()( AHBH −

radius

Energy difference between
states A and B
(“uphill”)

Probability
of success
of overcoming the 
barrier at 
temperature T
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Arrhenius law - explanation
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1

0

0.8
E.g. when exp(..) = 0.8 most 
choices for p will be below, 
that is, higher
chance for acceptance

low barrier

high barrier0.1

Random number 0 < p < 1
(equal probability to draw any number between 0 and 1)

Acceptance if:

Probability
of success
of overcoming the 
barrier

Play “1D darts”

….
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Have: State A (initial state) + energy function H(A)

Step 1: Generate new state B (random move)

Step 2: if  H(B)<H(A) then a = 1

else

Draw random number 0 < p < 1

if                                                     a = 1

else

a = 0

endif

endif

Step 3: if  a = 1 then accept state B

endif 

repeat       times

Summary: Metropolis-Hastings Algorithm
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a=variable either 0 or 1
(used to detect acceptance
of state B when a=1)

a = true[1]/false[0]
for acceptance 
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Summary: MC scheme

drdprprpAA
p r
∫ ∫>=< ),(),( ρ ∑

=

><
ANi

i
A

A
N

A
..1

1
Have achieved:

Note:
• Do not need forces between atoms (for accelerations)
• Only valid for equilibrium processes
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Property calculation with MC: example

A

Iteration
“MC time”

Averaging leads to “correct”
thermodynamical property

Error in Monte Carlo decreases as  NA
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Complex moves

Move sets can be adapted for other cases, e.g. not just 
move of particles but also rotations of side chains
(=rotamers), torsions, etc. 

E.g. application in protein folding problem when we’d like 
to determine the 3D folded structure of a protein in 
thermal equilibrium

After: R.J. Sadus
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Possible Monte Carlo moves

Trial moves
Rigid body translation
Rigid body rotation
Internal conformational 
changes (soft vs. stiff modes)
Titration/electronic states
…

Questions:
How “big” a move should we 
take?
Move one particle or many?

Image by MIT OpenCourseWare.
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Monte Carlo moves

How “big” a move 
should we take?

Smaller moves: 
better acceptance 
rate, slower 
sampling
Bigger moves: 
faster sampling, 
poorer acceptance 
rate

Move one particle or 
many?

Possible to achieve 
more efficient 
sampling with 
correct multi-
particle moves
One-particle moves 
must choose 
particles at random Image by MIT OpenCourseWare.
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2. How to model chemical interactions
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Atomic interactions – different types of chemical 
bonds

Primary bonds (“strong”)
Ionic (ceramics, quartz, feldspar - rocks) 
Covalent (silicon) 
Metallic (copper, nickel, gold, silver)
(high melting point, 1000-5,000K)

Secondary bonds (“weak”)
Van der Waals (wax, low melting point) 
Hydrogen bonds (proteins, spider silk)
(melting point 100-500K)
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Atomic interactions – different types of chemical 
bonds

Primary bonds (“strong”)
Ionic (ceramics, quartz, feldspar - rocks) 
Covalent (silicon) 
Metallic (copper, nickel, gold, silver)
(high melting point, 1000-5,000K)

Secondary bonds (“weak”)
Van der Waals (wax, low melting point) 
Hydrogen bonds (proteins, spider silk)
(melting point 100-500K)

Ionic: Non-directional (point charges interacting)
Covalent: Directional (bond angles, torsions matter)
Metallic: Non-directional (electron gas concept)

Difference of material properties originates from different atomic 
interactions
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Types of bonding (illustrations)

Ionic bonding Covalent bonding

charge
+/-

electron
density
(localized!)

+ + + + + +
+ + + + + +

+ + + + + +

Metallic bonding

Hydrogen bonding

donor/
acceptor

© source unknown.  All rights reserved. This content is 
excluded from our Creative Commons license. For more 
information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse
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Wax 

Soft, deformable, does not break under deformation

Courtesy of Ruth Ruane, http://www.whitewitch.ie. Used with permission.

http://www.whitewitch.ie/
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Rocks

Image courtesy of Wikimedia Commons.

Quite brittle (breaks e.g. during earthquake)



Rocks and sand on Mars

Image courtesy of NASA.What are the properties and composition of extraterrestrial rocks?
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Gold

Image courtesy of Wikimedia Commons.

Very “soft” metal, deformable, high density 



40

Silicon

Image courtesy of NASA.

Rather brittle – shatters into many pieces if dropped
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Spider web

Image courtesy of U.S. Fish and Wildlife Service.

Very extensible, deformation, yet very strong (similar to steel)
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Tree’s leaf

Image courtesy of Wikimedia Commons.

Very deformable under bending (wind loads), but breaks easily under tear
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Particularly intriguing…brittle or ductile?

Image courtesy of quinn.anya. 
License: CC-BY.

Image by MIT OpenCourseWare.

BRITTLE DUCTILE 

Glass Polymers 
Ice... 

Shear load 

Copper, Gold 

http://www.flickr.com/photos/quinnanya/


44

Outline
Goal: model chemical bonds with the objective to enable force 
calculation (see lecture 2, basic MD algorithm) or energy 
calculation (see lecture 4/5, MC)

Two-step approach: 

1. Define energy landscape, i.e. defines how distance between 
particles controls the energy stored in the bond

2. Then take derivatives to obtain forces, to be used in the MD 
algorithm

“Modeling and simulation” paradigm:
First, develop mathematical expressions (modeling)
Second, use model in numerical solution (simulation, =MD)
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Models for atomic interactions

Define interatomic potentials that describe the energy of a set of atoms 
as a function of their coordinates r:

)(rUU totaltotal  = Depends on position of
all other atoms

{ } Njrr j ..1==
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Models for atomic interactions

)(rUU totaltotal  =

NirUF totalri i
..1)( =−∇=       

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

∂
∂

∂
∂

=∇
iii

r rrri
,3,2,1

,,

Depends on position of
all other atoms

Change of potential energy
due to change of position of
particle i  (“gradient”)

{ } Njrr j ..1==

Define interatomic potentials that describe the energy of a set of atoms 
as a function of their coordinates r:

2
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2.1 Pair potentials 
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Pair potentials: energy calculation

Simple approximation: Total energy is sum over the energy 
of all pairs of atoms in the system

=ijr distance between
particles i and j12r

25r
12r

25r
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Pair potentials: energy calculation

Simple approximation: Total energy is sum over the energy 
of all pairs of atoms in the system

=ijr distance between
particles i and j

)( ijr

12r

25r φ Pair wise
interaction 
potential energy 
for each bond
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Pair potentials: energy calculation

Simple approximation: Total energy is sum over the energy 
of all pairs of atoms in the system

12r

25r

∑
=

=
N

j
iji rU

1

)(  φEnergy of atom i

=ijr distance between
particles i and j

)( ijrφ Pair wise
interaction 
potential energy 
for each bond
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Overview - pair potentials: total energy calculation

Pair wise summation of bond energies

  ∑ ∑
≠= =

=
N

jii

N

j
ijtotal rU

,1 1
2
1 )(φ

)( ijrφ

∑
=

=
N

j
iji rU

1

)(  φEnergy of atom i

Pair wise
interaction 
potential

Simple approximation: Total energy is sum over 
the energy of all pairs of atoms in the system

=ijr distance between
particles i and j

12r

25r

avoid double counting
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Example: calculation of total energy

( )NNNNtotalU ,1223211141312 .........
2
1

−+++++++++= φφφφφφφφ 

  ∑ ∑
≠= =

=
N

jii

N

j
ijtotal rU

,1 1
2
1 )(φ

)( ijij rφφ =with

12r

25r

two “loops” over pairs of all
particles 
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Interatomic pair potentials: examples

Morse potential

Lennard-Jones 12:6 
potential
(excellent model for noble
Gases, Ar, Ne, Xe..)

Buckingham potential

Harmonic approximation
(no bond breaking)

( ) ( ))(exp2)(2exp)( 00 rrDrrDr ijijij −−−−−= ααφ
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⎟
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How to use a pair potential, e.g. LJ
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Force calculation – pair potential
Forces on particles can be calculated by taking derivatives from the potential 
function & by considering all pairs of atoms

Start with force magnitude (STEP 1): Negative derivative of potential 
energy with respect to atomic distance

x1

x2f
ijr

j

i

1f
2f

)('
d

)(d
|

d
)(d

ij
ij

ij

rr
r

r
r

r
rF

ij

φ
φφ

−=−=−=
=

x1

x2
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Force calculation – pair potential

x1

x2fij

i
i r

xFf =

x1

x2

ijr

j

i

Component i of 
vector ijr

ijij rr =
1f

2f

)('
d

)(d
|

d
)(d

ij
ij

ij

rr
r

r
r

r
rF

ij

φ
φφ

−=−=−=
=

iieff =

Forces on particles can be calculated by taking derivatives from the potential 
function & by considering all pairs of atoms

Start with force magnitude (STEP 1): Negative derivative of potential 
energy with respect to atomic distance

Calculate force vector (STEP 2):
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What can we do with this potential?
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Bending a copper wire until it breaks
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A closer look

http://www2.ijs.si/~goran/sd96/e6sem1y.gif

Courtesy of Goran Drazic. Used with permission.

http://www2.ijs.si/~goran/sd96/e6sem1y.gif
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Simulation details

- 1,000,000,000 atoms (0.3 micrometer 
side length)

- 12:6 Lennard-Jones ductile material, 
for copper

- Visualization using energy filtering 
method (only show high energy atoms)

φ

r

Generic 
features of 
atomic 
bonding: 
„repulsion vs. 
attraction“

Case study: plasticity in a micrometer crystal of 
copper

Image by MIT OpenCourseWare. After Buehler, et al., 2005.

(1 1 0) 

[1 1 0] 

[1 1 0] 
Crack faces 

Mode 1 tensile loading 

Y 

Z 

X 

[ ] 

[ ] 

y = [ ] 

[ ]
[ ] 

[ ] 

001

Crack Direction 1 1 0

100

z = 001
x = 110

010

Image by MIT OpenCourseWare. After Buehler, et al., 2005.
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A simulation with 1,000,000,000 particles 
Lennard-Jones - copper

Fig. 1 c from Buehler, M., et al. "The Dynamical Complexity of Work-Hardening: A Large-Scale 
Molecular Dynamics Simulation." Acta  Mech Sinica 21 (2005): 103-11. 
© Springer-Verlag.  All rights reserved. This content is excluded from our Creative Commons 
license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse
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Strengthening caused by hindering
dislocation motion
If too difficult, ductile modes break
down and material becomes brittle

????

Image by MIT OpenCourseWare.
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Parameters for Morse potential

(for reference)
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Morse potential parameters for various metals

( ) ( ))(exp2)(2exp)( 00 rrDrrDr ijijij −−−−−= ααφ
Image by MIT OpenCourseWare.

Morse Potential Parameters for 16 Metals

Metal L x 10-22 (eV)αa0 α (Α−1) r0 (Α) D (eV)β

Pb

Ag

Ni

Cu
Al

Ca

Sr
Mo

W

Cr

Fe
Ba

K

Cs
Rb

2.921

2.788

2.500

2.450
2.347

2.238

2.238
2.368

2.225

2.260

1.988
1.650

1.293

1.267

1.260
1.206

83.02

71.17

51.78

49.11
44.17

39.63

39.63
88.91

72.19

75.92

51.97
34.12

23.80

23.28

23.14
22.15

7.073

10.012

12.667

10.330
8.144

4.888

4.557
24.197

29.843

13.297

12.573
4.266

1.634

1.908

1.351
1.399

1.1836

1.3690

1.4199

1.3588
1.1646

0.80535

0.73776
1.5079

1.4116

1.5721

1.3885
0.65698

0.49767

0.58993

0.41569
0.42981

3.733

3.115

2.780

2.866
3.253

4.569

4.988
2.976

3.032

2.754

2.845
5.373

6.369

5.336

7.557
7.207

0.2348

0.3323

0.4205

0.3429
0.2703

0.1623

0.1513
0.8032

0.9906

0.4414

0.4174
0.1416

0.05424

0.06334

0.04485
0.04644

Na

Adapted from Table I in Girifalco, L. A., and V. G. Weizer. "Application of the Morse Potential Function
to Cubic Metals." Physical Review 114 (May 1, 1959): 687-690.
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Morse potential: application example (nanowire) 

Source: Komanduri, R., et al. "Molecular Dynamics (MD) Simulation of Uniaxial Tension of Some Single-
Crystal Cubic Metals at Nanolevel." International Journal of Mechanical Sciences 43, no. 10 (2001): 2237-60.

Further Morse potential parameters:

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission. 

http://dx.doi.org/10.1016/S0020-7403(01)00043-1
http://dx.doi.org/10.1016/S0020-7403(01)00043-1
http://www.sciencedirect.com/
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Cutoff-radius: saving time
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Cutoff radius

∑
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Cutoff radius = considering interactions only to a certain distance
Basis: Force contribution negligible (slope)
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Derivative of LJ potential ~ force

Beyond cutoff: Changes in energy (and thus forces) small

Image by MIT OpenCourseWare.
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Putting it all together…
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MD updating scheme: Complete

( ) ...)()(2)()( 2
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Positions 
at t0

Accelerations
at t0

Positions 
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mfa ii /=

r
xFf i

i =

(1) Updating method (integration scheme)

(2) Obtain accelerations from forces

(3) Obtain forces from potential

Potential
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⎟
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2.2 How to model metals: Multi-body 
potentials

Pair potential: Total energy 
sum of all pairs of bonds
Individual bond contribution 
does not depend on other atoms
“all bonds are the same”

  ∑ ∑
≠= =

=
N

jii

N

j
ijtotal rU

,1 1
2
1 )(φ

Is this a good assumption?

Courtesy of the Center for Polymer 
Studies at Boston University.  Used 
with permission.
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Are all bonds the same? - valency in hydrocarbons

H

All bonds are not the same!

Adding another H is not favored

Ethane C2H6
(stable configuration)
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Are all bonds the same? – metallic systems

Bonds depend on the environment!

Pair potentials:  All bonds are equal!
Reality:  Have environment
effects;  it matter that there is a 
free surface!

+ different
bond EQ 
distance

stronger

Surface

Bulk 
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Are all bonds the same?

Bonding energy of red atom in               is six times bonding energy in

This is in contradiction with both experiments and more accurate quantum
mechanical calculations on many materials

∑
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j
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j

iji rU  φ  )( iji rU φ=

After: G. Ceder



75

Are all bonds the same?

Bonding energy of red atom in               is six times bonding energy in

This is in contradiction with both experiments and more accurate quantum
mechanical calculations on many materials

For pair potentials

For metals

Bonds get “weaker” as more atoms are added to central atom

Z~

Z~

:Z Coordination = how many 
immediate neighbors an atom has

After: G. Ceder
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Bond strength depends on coordination

2      4     6     8    10   12 coordination

energy per bond

Z~

Z

Z~

pair potential

Nickel 

Daw, Foiles, Baskes, Mat. Science Reports, 1993
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Transferability of pair potentials

Pair potentials have limited transferability:

Parameters determined for molecules can not be used 
for crystals, parameters for specific types of crystals can 
not be used to describe range of crystal structures

E.g. difference between FCC and BCC can not be 
captured using a pair potential 
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Metallic bonding: multi-body effects

Need to consider more details of chemical bonding to 
understand environmental effects 

+ + + + + +
+ + + + + +

+ + + + + +

+
Electron (q=-1)

Ion core (q=+N)

Delocalized valence electrons moving between nuclei generate a 
binding force to hold the atoms together: Electron gas model 
(positive ions in a sea of electrons)

Mostly non-directional bonding, but the bond strength indeed 
depends on the environment of an atom, precisely the electron 
density imposed by other atoms
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Concept: include electron density effects

)(, ijj rρπ

Each atom features a particular distribution of electron density
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Concept: include electron density effects

Electron density at atom i

Atomic electron 
density of atom j

ij

)(
..1

, ij
Nj

ji r
neigh

∑
=

= ρπρ

)(, ijj rρπ

ijr
Contribution to electron density at site i due to electron 
density of atom j evaluated at correct distance (rij)
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Concept: include electron density effects
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Electron density at atom i

Atomic electron 
density of atom j
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potential energy)
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Embedded-atom method (EAM)

)()(
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Pair potential energy Embedding energy
as a function of electron 
density

iρ Electron density at atom i
based on a “pair potential”:

∑
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Atomic energy
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1

 φ

Total energy

First proposed by Finnis, Sinclair, Daw, Baskes et al. (1980s)
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Physical concept: EAM potential

Describes bonding energy due to electron delocalization

As electrons get more states to spread out over their kinetic 
energy decreases

When an  impurity is put into a metal its energy is lowered 
because the electrons from the impurity can delocalize into 
the solid.

The embedding density (electron density at the embedding 
site) is a measure of the number of states available to 
delocalize onto.

Inherently MANY BODY effect!
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Effective pair interactions

Can describe differences between bulk and surface

r

+ + + + + +
+ + + + + +
+ + + + + +

r

+ + + + + +
+ + + + + +
+ + + + + +

See also: Daw, Foiles, Baskes, Mat. Science Reports, 1993

Image by MIT OpenCourseWare.
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Summary: EAM method

State of the art approach to model metals
Very good potentials available for Ni, Cu, Al since late 
1990s, 2000s
Numerically efficient, can treat billions of particles
Not much more expensive than pair potential 
(approximately three times), but describes physics much 
better

Strongly recommended for use!
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