
3.032 Problem Set 5 
Fall 2007 

Due: Start of Lecture, Monday 10.29.07 
(NOTE THAT THIS DATE IS LATER THAN IN YOUR SYLLABUS DUE TO NEW DUE DATE OF LAB 2.) 

1. We have discussed that linear viscoelastic (LVE) deformation of polymers can result in energy 
dissipation (i.e., anelastic or non-elastic deformation via heat loss) when the loading 
time/frequency is on the order of the characteristic time/frequency of the polymer LVE 
model. This can also occur in polycrystalline metals under low, cyclic strains: a fraction of 
the total stored energy is dissipated anelastically, due in part to “friction” at grain 
boundaries. The magnitude of this loss is related to the total number of grain boundary 
atoms in contact, compared to the total number of atoms in the polycrystalline metal. 

(a) Assuming the grains are cubes of uniform size, graph the fraction of grain boundary atoms to 
total atom number for polycrystalline metals of average grain size 100 nm, 1 μm, 10 μm and 
100 μm. Here, you can assume the Bravais lattice of your favorite elemental metal, as this 
choice will not strongly affect your answer. 

(b) From the above analysis, would you specify the grain size as a critical parameter in your 
design of a polycrystalline metal to be used as baseball bats? If so, what is the ideal grain 
size? If not, what other mechanical and/or structural characteristics of the metal would you 
consider more important, and why? 

2. As discussed in lecture (10.17.07), the Worm Like Chain (WLC) model of rubber elasticity 
has been used to analyze the deformation of DNA under uniaxial loading. Here, you can 
refer to the graphs distributed in that lecture (also on MIT Server). 

Bouchiat et al. used magnetic tweezers to extend lambda-DNA (λ-DNA) the structure of which 
you will analyze in 3.034 Lab 3, and applied the WLC model to infer its structure and 
resistance to bending. Below is a subset of the experimental data Bouchiat et al. reported, 
with additional points available on the published graph distributed in class (Bouchiat et al., 
Biophys J. (1999) Fig. 2). Apply the WLC model to determine the following: 

Applied force 
F [pN] 

Extension r 
[μm] 

5 x 10-2 5.6 
8.5 x 10-2 7.5 
1.8 x 10-1 10.1 
5.0 x 10-1 12.3 

2.0 14.0 
9.0 15.0 

(a) Graph these experimentally measured data as force on the chain vs. stretch of the chain, Fc 

vs. λc = r/ro where ro is the distance between chain ends before force is applied, and indicate 
the region over which the experimentally measured data is fit reasonably well by the WLC 
model. 

(b) The number of nucleotides in this λ-DNA. 



(c) The number of nucleotides that comprise a segment of the DNA that is significantly resistant 
to bending. 

(d) The effective entropic spring constant of λ-DNA, ks. Note that this is often defined as the 
resistance to extension at large forces – why is this? (Hint: See inset graph of Smith and 
Bustamante’s work on DNA.) Compare your value to that stated by the Bouchiat et al., and 
explain why they expressed this stiffness in units of [N] instead of [N/m]. 

(e) The minimal force required to break the phosphate ester bonds that join nucleotides in DNA? 
(f) The stretch λc = r/ro at which the WLC prediction diverges from that of the Freely Jointed 

Chain (FJC) model, by graphing the FJC prediction on the graph in (a), and the reasons for 
this divergence. 

3.	 In Pset 3 (Question 1a), you were asked to analyze the stress state of an Al thin film that was 
to be used a metallization layer in an integrated circuit fabrication process.  You are now 
interested in predicting whether the film under this biaxial stress state will yield according to 
three different yield criteria: maximum normal stress (also called Rankine criterion); Tresca 
criterion; and von Mises or J2-flow criterion. Here, explicitly consider that the through-
thickness stress σzz = 0 as one of our three principal stresses.  Assume the yield strength of 
the Al film in uniaxial tension and compression σy = 100 MPa. 

(a)	 Determine whether the Al film will yield using each of the three yield criteria mentioned 
above. 

(b) Graph the yield locus for each of the three different yield criterion on a graph of σ2/σy vs. σ1/ 
σy, where σ3=0. Which of the three criteria is the most conservative in predicting the stress 
state required for yielding? Which, if any, of the criteria is not suitable for the analysis of 
ductile materials such as aluminum? 

(c) 	 Now assume that instead of a biaxial stress state, the Al film is under pure shear loading 
(only τ12 is nonzero). Considering the Tresca and von Mises criteria separately, what 
percentage of the material’s yield strength does an applied stress σa have to achieve in order 
to produce yielding under pure shear conditions? 

4. The stress states at which amorphous, glassy polymers such as polystyrene and polycarbonate 
yield are sensitive to pressure p = σii/3, where σii = I1, the first invariant of the stress tensor σij. 
Such polymers can yield either by shear band formation or by crazing. As a result, the biaxial 
stress states at which these polymers yield in compression is quite different from that in which 
they fail in tension, and the yield locus is not centered at (0, 0).  

(a) Based on your knowledge of how macromolecules would deform under compression vs. 
tension during shear band formation or crazing, predict whether you would expect yielding to 
occur at lower principal stresses in tension vs. in compression. 

(b) Based on this prediction, draw the von Mises yield locus for a material which shows 
pressure-insensitive yielding, and superpose on that graph the yield locus for polystyrene. Note 



that Mohr (of Mohr’s circle fame) was the first to note this tension/compression asymmetry, and 
this criterion is often called the Mohr-Coulomb failure criterion. 

5. So many people were working on the prediction of metal yielding around WWI that the von 
Mises yield criterion has many names, including the J2-flow criterion, maximum shear 
deformation energy criterion, and maximum distortional energy criterion. Here you will show 
that you can calculate the von Mises yield criterion even if you do not know that J2 is the second 
invariant of the deviatoric stress tensor sij. 

(a) The strain energy density U of an elastically deformed material is the area under the uniaxial 
stress-strain response in the elastic region. Write an expression for U(σ, ε) for linear elastic, 
uniaxial deformation, as is typical of a metal. 

(b) Linear deformations are superposable, so now write U(σi, εi) assuming an applied triaxial, 
principal stress state. 

(c) Each of these strains εi can be expressed as εi (σi, E, ν), so now express U in terms of only σi, 
E, and ν. 

(d) This strain energy density is the sum of the energy to cause volume change and the energy to 
cause shape change (distortion), or U = Uv + Ud. Because the average stress (σavg = (σii/3 = 
σhydrostatic causes equal principal strains in all 3 directions, the volume change is due to σii/3, and 
the shape or distortional change is the rest  of the stress, or (σ1 – σii/3), (σ2 – σii/3), and (σ3 – 
σii/3). Now express the distortional strain energy density Ud (σi, E, ν) by replacing the total stress 
components in (c) with these distortional stress components. 

(e) von Mises criterion says that the material failure occurs when this distortional energy for 
some arbitrary σij reaches the value that would be attained at yielding under uniaxial loading, or 
when Ud = (Ud)y. Consider the case of plane stress (σ3 = 0), and equate Ud with that attained for 
yielding in uniaxial tension (Ud)y to derive an expression for σy(σ1, σ2). As a check, this should 
be the equation of the ellipse that defines the von Mises yield locus! 


