
3.032 Problem Set 1 
Fall 2007 

Due: Start of Lecture, 09.14.07 

1.	 The I35 bridge in Minneapolis collapsed in Summer 2007. The failure apparently occurred at a pin 
in the gusset plate of the truss supporting the bridge span, at a time when the loads on the bridge 
span were unequal due to construction crews working on the westbound side. We’ll treat a simplified 
section of this truss (Fig. 1a) to consider whether this unbalanced load could have generated enough 
force for the truss to fail. We will examine the truss section denoted by the dotted lines, and replace 
the gusset plate with a pin joint. 

Figure 1a:  Bridge truss with gusset plates at pins.  

On the day of the bridge failure, construction crews occupied the westbound lanes (right side of Fig. 
1b). Let F be the forces acting on the truss members by the regular traffic and 2F be the forces 
acting on the truss by the heavier construction equipment.  Taking into account the average mass of a 
car to be 1362 kg, we can estimate F to be ~13.35 kN. 
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Figure 1b:  Schematic of truss section with pin-loaded joints and supports.  
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(a) Determine the reaction forces at supports E and F.  Show any free-body diagrams used in your 
calculations. 
Solution: Here is the free-body diagram of the entire truss 
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First, we can take the sum of the forces in the x- and y- directions 


∑ Fx = 0 : FEx = 0


∑ Fy = 0 : FEy + FFy − 2(13.35) − 2(26.70) = 0


FEy + FFy = 80.1kN 

To eliminate one of the unknown variables in the above equation, we can take the sum of the 
moments about joint E 

∑ M E = 0 :13.35(2.5) − 26.70(3.5) − 26.70(6.0) + FFy (3.5) = 0 

FFy = 63.0kN


FEy = 80.1kN − 63.0kN = 17.1kN


M+ 

(b) 	 Determine the forces in members AB and AE. Draw all the free-body diagrams you use in your 
calculations and show whether the forces on the members you calculate are in tension or 
compression.  
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Solution: First, using the method of joints, we will construct a force triangle about Joint A 
to determine the unknown forces in members AB and AE.  We arbitrarily assume that both 
unknown forces are acting away from the joint (i.e. the members are in tension). 

13.35kN 

A 
FAE 

θ 3.0m 

FAB 

2.5m 

The angle, ∠ θ , can be determined from the truss dimensions as follows 

2.5tan( ) =θ 
3.0 

θ = 39.8° 

Taking the sum of the forces in the y-directions we get 

D∑ Fy = 0 : −13.35 − FAE  cos(39.8 ) = 0 

FAE	 = −17.38kN  =17.38 kN  C  ( ) 

Note: Since we obtained a negative sign for FAE, we know that our original assumption 
about the direction of force FAE was incorrect. Therefore, it must point towards joint A (i.e., 
member AE is in compression). 

Then, taking the sum of the forces in the x-directions we get  

D∑ Fx = 0 : FAB  −17.38sin(39.8 ) = 0 
FAB =11.13 kN  T  ( ) 

(c) 	 The diagonal members BF and EC are called counters, thin cables that are designed to be loaded 
only in tension.  It is known that the support pins at E and F will fail if any of the counters is under a 
tensile force greater than 10 kN.  From the loading on the truss described above, determine the 
forces on each of the members BF and EC and state which, if any, of the pins will fail.  Show all the 
free-body diagrams associated with your calculations.   

3




 

Solution: This problem takes a little bit of intuition in order to solve.  If we use the method 
of sections and take a look at the portion ABE (cut is vertically through the middle of the 
truss) we get the following 

13.35kN 13.35kN 
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FEF 

∠φ 

∠φ 

17.1kN 

Let us examine the known vertical forces acting on this portion.  The total downward force 
is equal to 26.70kN (13.35x2), which is greater than the one upward force, 17.1kN, being 
exerted by the pin at E. Therefore, in order for this portion of the truss to be in equilibrium, 
there must be another upward force to balance out the forces in the y-direction.  Looking at 
the four unknown forces (FBC, FBF, FEC, and FEF) we can see that only the force FEC can 
provide the upward force necessary for equilibrium and that it must be in tension.  Thus, 
member BF is slack (i.e., does not provide any forces necessary to obtain equilibrium), and 
so FBF = 0. 

Using the above reasoning, we can now eliminate the force FBF from our analysis of portion 
ABE. To obtain the force in the other counter member, EC, we simply take the sum of the 
forces in the y-direction using the free-body diagram shown above. 

3tan( ) =ϕ 
3.5 

ϕ = 40.6D 

D∑ Fy = 0 :17.1 −13.35 −13.35 + FEC  sin(40.6 ) = 0 

FEC = 14.75 kN T ( ) 

Therefore, the pin at E will fail because FEC = 14.75kN>10kN.  The pin at F will not fail as 
there are no forces acting on member BF. 
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2.	 The MIT varsity diving team is practicing their back flips on the Z-center’s diving boards (Fig. 2).  
The diving boards have a total length of 3 m, width of 0.5 m, and thickness of 0.1 m.  The core of the 
boards is made of a Douglas fir wood with an estimated Young’s modulus E of 0.6GN/m2. Let us 
approximate the diving board as a clamped-free beam, neglecting the springboard support at the 
midspan of the diving board and the weight of the diving board. 

Figure 2:  Z-center diving boards.  

(a)	 If the average weight of a student standing on the free-end of the board is about 155 lbs, how much 
will the board deflect? Note that, in the US, “weight” is commonly stated in units of mass [pounds, 
or lbs] instead of force, and state your solution in SI MKS units. 

Solution: The deflection of a clamped-free beam under a point load at the end of the beam 
is 

PL3 

δ = 
3EI 

1 3 −5 4I = wh = 4.17 ×10 m 
12 

P mg  = (155 lbs  / 2.2 lbs )*9.81 m / s2 = 691N= 
kg 

δ = 
691

9 

∗ (3.0) 3 

−5 = 0.25 m 
3 (0.6  ×10  )  (4.17 10  ∗ × )∗ 

(b)	 Draw a free-body diagram of the diving board, again neglecting the spring board near the midspan 
for simplicity, and determine all reaction forces and moments for the “typical diver” in (a). 
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Solution: 
y 

x 
P 

Rm A B 

Ry 

To solve for Ry we simply take the sum of the forces in the y-direction and set them equal to 
zero according to equilibrium conditions 

∑ Fy = 0 : Ry − 691 = 0 

Ry = 691N  (upward direction) 

To solve for Rm, we now take the moment about point A. Note that we arbitrarily assumed 
Rm to be positive (counter-clockwise in our convention) in our free-body diagram  

∑M A = 0 : Rm − (691)(3) = 0M+ 

Rm = 2,073 N-m 

3. Bundles of protein filaments inside tissue cells are structural elements that can generate contractile 
force against the materials to which they adhere. Figure 3 shows struts called “stress fibers” that extend 
from one end of the cell to the other. These fibers are made of crosslinked, filamentous actin, with an 
average diameter of 2 µm and an effective “stiffness” E of 16 kN/m2. 

If we assume the connections at either end of the stress fiber can be modeled as pins, how much force P 
would the cell need to generate to buckle the longest of these stress fibers? 
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P 
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either end 

Figure 3: Structural elements of cells under axial end-loads. 

Solution: 

Here, the force is generated BY the motor proteins on the fiber, rather than an external force, but we’ll 
treat this as an end-loaded beam. The stress fiber is much longer than it is wide, so we will assume the 
first mode of buckling (n=1) and Euler’s solution of critical buckling load: 

P = π2EI/Le
2 

Effective length Le = L for these supports (50 µm), and I = πr4/4 = π(1 µm)4/4 = 7.8 x 10-25 m4. 

P = [π2*16 x 103 N/m4 * 7.8 x 10-25 m4] / (50 x 10-6 m)2 = 4.9 x 10-11 N = 50 pN. 

This is a very small force, on the same order as that required to pull two bound molecules apart! Thus, 
buckling is plausible if the cell’s motor proteins that generate the contractile force can exert at least 50 
pN. 

4. A U.S. based company was in charge of designing MIT’s new physics lab, near the new DMSE 
headquarters in Bldg 6.  They used 30-ft long, wide-flanged structural steel beams for the floor joists to 
carry the distributed weight of the rooms above. The actual weight distribution is shown in Fig. 4, which 
is different from what they anticipated, so they want to know where to add an extra support to minimize 
the shear force and bending moment on this beam. This week, you’ll get started on that calculation. 
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Figure 4: Floor joist beam of new MIT physics building. 

(a) Being a US-based engineer, the first step to analyzing the beam is to convert all units from the US 
architects to SI MKS units.  Perform these conversions.  

Solution: Use the following conversion factors 

1lbf = 4.45N


1 ft = .3048m


Lengths: 

18 ft = 5.49m


4 ft = 1.22m


8 ft = 2.44m


Distributed Loads: 


lbf N 1 ft kN
q = 2,500 ∗ 4.45 ∗ = 36.5
ft lbf .3048 m m


lbf N 1 ft kN
ω0 = 3,500 ∗ 4.45 ∗ = 51.1 
ft  lbf  .3048 m m 

(b) Draw a free-body diagram of the beam and calculate the reaction forces at A and B. 

Solution: In order to do this problem we need first determine the equivalent concentrated 
load for the triangular-shaped distributed load, ω. 

The area under this loading (in kN)  is given by the equation for the area of a triangle, 
A=1/2bh 

A = 
(51.1)(2.44) 

= 62.3kN 
2 
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The coordinates for the center of gravity for a triangle is given by  

h x = 
3 

Taking the location of support A as x=0 

2.44 x = 9.15 − ( ) = 8.34 m
3 

Therefore, the equivalent concentrated load is W=62.3kN and it line of action is located at 
a distance X = 8.34m to the right of A 

The equivalent concentrated load for the rectangular (uniform) distributed load is simply 
the area under the rectangle and its line of action is in the center of the rectangle 

A = (36.5)(5.49) = 200.4kN 

5.49X = = 2.75m 
2 

Therefore, the equivalent concentrated load is Q=200.4kN and its line of action is located at 
a distance X = 2.75m to the right of A 

Using the determined resultant forces, the free-body diagram can now be drawn as follows 

y 

x 

Q = 200.4kN W = 62.3kN 

FAx 

2.75m 

FAy FBy 

8.34m 

9.15m 

The reaction forces are calculated as follows: 
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First, we sum up the forces acting on the beam in the x and y directions 

∑ Fx = 0 :  FAx  = 0 

∑ Fy = 0 : FAy  − 200.4 − 62.3 + FBy  = 0 

FAy + FBy = 262.7kN  

In order to eliminate one of the unknown variables, we then take the sum of the moments 
about support A 

∑M A = 0 : FA (0) − (200.4)(2.75) − 62.3(8.34) + FBy  (9.15) = 0 

Solving for FBy we get 

FBy = 117.0kN 

Finally, we can solve for FAy 

FAy = 262.7 −117.0 = 145.7kN 

M+ 
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