
3.032 Problem Set 3 Solutions  
Fall 2007 

Due: Start of Lecture, 10.01.07 

1. 	 Here, we will analyze the stress states of a solid block of aluminum under various 
loading conditions using the Mohr’s Circle construction.  We are going to use the 
following convention to describe the different components of stress: 
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For each of the following situations, describe the stress state in terms of a stress 
matrix σij. Determine the principal normal and shear stresses and give the 
orientation of the principal axes as well as the orientation of the max shear stress.  

(a) One very popular application of aluminum is for use as thin films for metallization 
layers in integrated circuit (IC) fabrication.  In the case of thin-films (or other thin 
geometries), where one of the dimensions of the material is much smaller than the 
other two, the stress acting through the smaller dimension is negligible and can be 
neglected during analysis. This case, where the stresses acting on one of the 
orthogonal planes is zero, is known as plane stress. Let us assume that the thickness 
dimension of the Al thin-film is along the z-direction (parallel to the x-y plane), so 
that the plane stress condition is σzz = τxz = τyz = 0. 

During a bend test of the Al thin film, a point on the surface of the film was found to 
have high stresses. It was decided that this point of the thin film would be further 
analyzed. The stresses on the film, with respect to the coordinate system shown 



above, were found to be σxx = 95MPa, σyy = 25MPa, and τxy = 20MPa. Determine all 
of the information stated in the problem (in bold italics) and note the value of the 
maximum normal stress.   

Solution: For this plane stress situation, there is a two-dimensional state of stress 
which can be described using the following stress matrix 

⎡95 20 0⎤ 
σ ij = ⎢

⎢20 25 0⎥
⎥ MPa 

⎢ 0 0 0⎥⎣ ⎦ 

To obtain the Mohr’s Circle for this stress state, we plot the two points that lie at 
opposite ends the diameter (solid black dots).  The two points are (σx, -τxy) and (σy, 
τyx). The reason for the positive/negative signs is due to our chose of convention for 
the stresses. A positive τxy is seen to produce a counter-clockwise rotation (hence, it 
is negative in out Mohr’s Circle construction) and a positive τyx is seen to produce a 
clockwise rotation (hence, it is positive in our Mohr’s Circle construction).  The 
grouping of the points is chosen so that all the stresses are acting on the same plane 
(or face) of the material.  



The center of the circle is located at the average normal stress value which is 
calculated as followed 

σ +σ 95 + 25σ = x y = = 60MPaavg 2 2 

Thus, the center of the circle is located at (60,0) MPa, as noted by the blue dot.  

Next, we calculate the radius of the circle using the following equation 

σ σ  ⎛ − ⎞
2

2R = ⎜
11 22 

⎟ +σ12 = 40.3MPa  
⎝ 2 ⎠ 

(Note: This is the same as calculating the hypotenuse of the right triangle shaded in 
grey.) 

The principal normal stresses σ1 and σ2 occur at an orientation defined by the angle 
2θ  between the original plane and the line at τ = 0; and the maximum shear stress 
occurs at an orientation that is defined by the angle 2θ between the original plane 
and the vertical diameter at σ = 60 MPa . The magnitudes are calculated as follows: 

σ1 =σ avg R 60 40.3 =100.3MPa  + =  +  

σ σ  R 60 40.3 ==  − = −  19.7MPa  2 avg 

τ12 R 40.3= =  MPa  

Thus, the maximum normal stress is 100.3MPa.  The orientation of the principal 
normal stresses is at an angle of 2θ from the σ-axis. This angle can be calculated as 
follows 

20tan(2 ) =θ 
35 

2θ = 29.74D 

Therefore, a counterclockwise rotation of the diameter of the circle by 29.74° (or a 
14.9° rotation in the same direction about the z-axis in the material) will produce the 
principal stress state  

⎡100.3 0 ⎤

σ ij = ⎢ ⎥MPa 

⎣ 0 19.7⎦




The orientation of maximum shear stress is given by a clockwise rotation of the 
diameter by 60.26° (or a 30.13° rotation in the same direction about the z-axis in the 
material).  The stress state in this case can be written as 

⎡ 60 40.3⎤
σ ij = 

⎣
⎢40.3 60 ⎦

⎥ MPa 

(b) Aluminum is also used in electrical transmission lines for power distribution.  	In 
order to assess the mechanical integrity of the lines, the lines are loaded in 
uniaxial tension. It is observed that the lines permanently deform at an applied 
uniaxial stress of 20 MPa. In addition to the requirements in bold font (σij, 
magnitude and orientation of principal/max shear stress states), also draw the 
orientation of the material representative volume element (here, a plane) that is 
under maximum shear stress.  Assume the following orientation and axis-set for 
the Al lines loaded in tension: 

Fig. 1a: Aluminum power line 
loaded under uniaxial force F. 

Solution: In this case we only have one normal stress acting in the x-direction and 
no shear stresses. Thus, the stress state is given as  

⎡20 0 0⎤

σ ij = ⎢

⎢ 0 0 0⎥
⎥ MPa


⎢ 0 0 0⎥
⎣ ⎦ 



The Mohr Circle construction is quite simple in this case.  The two endpoints of the 
radius will be at (0,0) and (20,0) and the circle is drawn as shown below  

We see by simple visual inspection of the Mohr circle that we are already in the 
principal stress state (i.e. all shear stresses are equal to zero), so we do not need to 
rotate our circle (or material) any further.  The principal axis is the x-axis.  Also, 
there is only one principal normal stress which is equal to 20MPa. 

In this case, the radius of the circle is equal to the average stress which is 10MPa 
[(20+0)/2].  This is also the maximum shear stress.  The diameter corresponding to 
the original state of stress must be rotated clockwise an angle of 2θ equal to 90° to 
obtain the equivalent representation that contains the principal shear stress.  This is 
the same as rotating the material in the same direction an angle of 45°.   

An illustration of the plane of max shear stress is shown below (shaded in grey).  
Notice that the plane of max shear stress is oriented 45° from the principal axis, 
which is the direction of the applied normal force in this case.  Rotating the x-y 
plane clockwise 45° about the z-axis gives the equivalent representation that 
contains the principal shear stress  
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y 
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(c) 	 One common forming process for aluminum parts is known as extrusion. In the 
extrusion process, a billet of material is forced through a die in order to obtain a 
workpiece with the desired cross-sectional geometry.  One type of extrusion process 
is known as hydrostatic extrusion. Unlike many extrusion operations, where 
pressure to the billet is supplied by a hydraulically-driven ram or pressing stem, the 
pressure in hydrostatic extrusion is supplied through an incompressible fluid medium 
surrounding the billet (see Figure 1b below). Hydrostatic extrusion is a very popular 
operation for ductile materials such as aluminum due to its ability to reduce defects 
in the extruded part through the compressive environment.  Typical pressures 
exerted on the workpiece are around 1400MPa. 

Write the stress state of a representative volume element of the 
Al billet inside of the extruder under the hydrostatic pressure of 
1400 MPa (noted by the grid region in Fig. 1b), and determine 
all other information requested in bold font.   

Figure 1b: 
Hydrostatic 
extrusion process   

(www.fzs.tu
berlin.de/html/en/ 
strpr_hydro.html) 

Image removed due to copyright restrictions. Please see 
http://www.fzs.tu-berlin.de/html/en/strpr_hydro.html__________________________________________ 

http://www.fzs.tu-berlin.de/html/en/strpr_hydro.html


Solution: For the hydrostatic pressure condition, the normal stresses acting on all 
three pairs of orthogonal faces of the block of material are equal.  Also, all of the 
shear stresses are equal to zero. Since the pressure being exerted on the Al billet is 
compressive, the normal stresses will all have negative values.  Thus, the stress state 
will look like 

⎡−1400 0 0 ⎤

σ ij = ⎢⎢ 0 −1400 0 ⎥

⎥ MPa 
⎢ ⎥
⎣ 0 0 −1400⎦


The Mohr’s Circle construction for this stress state will just be a single point 
because all of the normal stresses are equal and there are no shear forces.  This is 
shown in the diagram below 

As all of the shear forces are equal to zero, we see that we are already in the 
principal stress state with each of the principal normal stress being equal to 
1400MPa. The principal axes are the x-, y-, and z-axes as noted in our original 
diagram and no rotation is necessary.   



One very interesting and important observation to take away is that the maximum 
shear stress, τmax, is zero (R = 0) under hydrostatic pressure!  Implications of this 
fact will be discussed further in class.   

2. You are responsible for performing uniaxial tensile tests on three very different 
materials:  a 316 stainless steel alloy, alumina (Al2O3), and high density polyethylene 
(HDPE). However, before performing the actual tests, you are asked to predict what the 
elastic stress vs. strain responses of each of the materials based on the mechanical 
properties of these materials documented in the literature (e.g., material property 
databases such as matweb.com, linked on our MIT Server site). 

(a) Graph the stress [MPa] versus strain [%] response for all three materials on a single 
graph and on 3 separate graphs, up to an applied strain value of .01 (or 1%) in strain 
increments of 0.0005.   

(b) Remark on the differences in behaviors seen for each of the three materials as related 
to their relevant mechanical properties.  Also, looking at the magnitude of the stresses at 
the maximum applied strain, do you expect all of these materials to deform elastically up 
to these strains?  If not, what was the fallacy in solely using Hooke’s law to predict the 
stress-strain behaviors for each of the materials? 

Solution: The Young’s modulus for each of the three materials (as found in 
Callister, ‘Materials Science and Engineering An Introduction’, 5th ed.) are 

E (316 stainless steel) = 193 GPa 

E (alumina) = 380 GPa 

E (HDPE) = 1.08 GPa 


The general formula for linearized Hooke’s law is given by  

σ = Eε 
Using the respective value of Young’s modulus for each of the three materials, the 
stress-strain graphs can be plotted by using Hooke’s law.   

http:matweb.com
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One can observe that the plots for all three materials produce straight lines with the 
slope being equal to the Young’s Modulus of the material. The plot for HDPE was 
reproduced on a second graph to make the stress values readable. 

Comparing the graphs of the different materials it is seen that alumina has the 
largest slope, the 316 stainless steel has next largest, and finally HDPE has the 
smallest slope. This makes sense based on the relative values of their Young’s 
modulus. The physical meaning behind this difference is the resistance of the 
material to elastic deformation. The Young’s modulus is a measure of the material’s 
stiffness, and hence its resistance to elastic deformation.  Thus, the higher the 
Young’s modulus, the more stress is required to produce the same amount of elastic 
strain. Ceramic materials, such as alumina, tend to be very stiff and thus have high 
values of E. On the other hand, polymers, such as HDPE, are very elastic and thus 



tend to have very small values of E.  Metals, such as the stainless steel, usually have 
modulus values between the two types. 

If we take a look at the curves for the alumina (a ceramic) and the 316 stainless steel 
(a metal), we see that the stress reaches magnitudes of 3800MPa and 1930MPa, 
respectively, at a strain of .01 (or 1%). These stresses are extremely high and most 
materials would either yield (typical metals) or fracture (typical ceramics) under 
such stresses. In fact, for most metallic materials, elastic deformation persists only 
to strains of about .005 (5%), after which plastic deformation processes start to take 
place. Ceramics, being very brittle materials, undergo even less elastic deformation 
and tend to plastically deform at strains of around .002 (2%) or less.  Both of these 
limits are shown on the graph above. (Note: These are just average values and the 
elastic limits, and corresponding stress values, will vary depending on the specific 
material). 

Unlike most metals and ceramics, polymers can undergo very large strains without 
undergoing plastic deformation.  However, Hooke’s law only accurately describes 
the stress-strain response for polymers at low temperatures for relatively small 
strains. At higher strains and temperatures, other non-linear processes govern 
deformation. 
To summarize, the most important note to take away from this problem is that 
Hooke’s Law is only valid in the elastic region of the stress-strain behavior. Past 
this region, different plastic deformation processes take place and result in much 
different (non-linear) stress-strain behaviors.  These plastic deformation processes 
differ for different material classes, and many of them will be explored throughout 
this class! 

(c) All three samples were given to you as cylinders with identical initial dimensions of 
10 cm length and 2 cm diameter. Show whether a uniaxial load frame of maximum load 
capability = 100 kN (like the ones you used to crush the beverage cans in Lab 1) will be 
sufficient to deform all three materials to the requested engineering normal strain of 1%. 
Here, neglect the possibility that the materials might not remain intact to that strain. 

Solution: In order to determine the force necessary to deform the materials to a strain 
of 1%, we must first find the associated stress necessary to obtain that same strain.  
We can use Hooke’s law (assuming all the materials behave in a linear elastic manner 
up to that strain) to figure out the stress needed to deform the materials to a 1% 
strain: 

× 9 MPaσ steel = (193 10 )(.01) =1930 
9σ Al O = (380 ×10 )(.01) = 3800 MPa 

2 3  

9σ HDPE = (1.08 ×10 )(.01) = 10.8MPa 



Next, we can calculate the cross-sectional area for the cylindrical specimens 

A =π r2 = π (1 10 −2 )2 = 3.14 ×10 −4 m2× 
Finally, we calculate the force required to produce the 1% strain by using our 
definition of engineering stress for the axial loading condition (σ=F/Ao or F=σAo) 

6 −4Fsteel = (1930 ×10 )(3.14 ×10 ) = 606.0kN  
6 −4FAl O = (3800×10 )(3.14 ×10 ) = 1193.2 kN  

2 3  

6 −4Fsteel = (10.8 ×10 )(3.14 ×10 ) = 3.4kN  

Therefore, the axial load frame will only be able to deform the HDPE to a 1% strain 
as the force required to deform the steel and alumina to the same strain are greater 
than the maximum load capacity of 100kN. 

3. You and your labmate have been given a joint project by your UROP advisor. He has 
asked you both to measure all the elements of the stiffness tensor Cijkl of two new 
proteins he has crystallized and is considering for use in a flexible, organic integrated 
circuit that must withstand mechanical bending. 

Another student has already used x-ray diffraction to determine the crystal structure of 
the proteins: protein A exhibits a tetragonal unit cell, whereas protein B exhibits an 
orthorhombic unit cell. Your labmate says, “Let's each measure the elastic constants Cijkl 
of one protein. Which one do you want to analyze, protein A or B?'” 

Fig. 3: Unit cells for (a) tetragonal and (b) 
orthorhombic crystals. 

Under the assumption that you'd like to spend as little time as possible on this project so 
you can get back to your 3.032 studies, what is your answer? Explain concisely, but as 
fully and accurately as possible, using the elasticity concepts discussed in 3.032.  

Solution: 
These protein crystals are structurally anisotropic, so the stiffness tensor Cijkl could 
contain up to 81 components (a 9 x 9 matrix mapping the 3x3 stress and strain tensors to 
each other), at least 21 of which could be independent values. This means I could need to 
make as many as 21 different tests, loading the crystal in 21 different uniaxial directions. 



However, I learned in 3.032 that this number of independent elastic constants decreases 
as the symmetry of the material (crystal structure, microstructure, or macrostructure as 
in a composite) increases. For an isotropic linear elastic material, there are only 2 
independent elastic constants, so I’d like to choose the protein crystal that is most like an 
isotropic material (elastic constants independent of measurement direction).  

Here, the tetragonal crystal is more symmetric than the orthorhombic crystal, which is 
clear from the fact that two of the lattice parameters of the tetragonal unit cell are 
indistinguishable. I’ll choose to measure the elastic constants for protein A. 

How many are there? Tetragonal has 7 independent elastic constants, and orthorhombic 
(a less symmetric unit cell) has 9. You were not asked to state this for pset 3, but you can 
figure it out from transformation of crystallographic axis directions that are equivalent. 
For the tetragonal crystal, if we assume the 3-direction is in the c-axis or long direction, 
the stiffness in the 1- and 2-directions must be equivalent, so C1111 = C2222 or C11 = C22 in 
contracted notation of the 6 x 6 matrix Cij. Likewise, the shear moduli in those planes 
would be equivalent, so C44 = C55. And so on. Ultimately, tetragonal crystals have at 
most 7 independent elastic constants: 11, 12, 13, 16, 33, 44, and 66.  


