
3.032 Problem Set 5 Solutions 
Fall 2007 

Due: Start of Lecture, Monday 10.29.07 
(NOTE THAT THIS DATE IS LATER THAN IN YOUR SYLLABUS DUE TO NEW DUE DATE OF LAB 2.) 

1. We have discussed that linear viscoelastic (LVE) deformation of polymers can result in energy 
dissipation (i.e., anelastic or non-elastic deformation via heat loss) when the loading 
time/frequency is on the order of the characteristic time/frequency of the polymer LVE 
model. This can also occur in polycrystalline metals under low, cyclic strains: a fraction of 
the total stored energy is dissipated anelastically, due in part to “friction” at grain 
boundaries. The magnitude of this loss is related to the total number of grain boundary 
atoms in contact, compared to the total number of atoms in the polycrystalline metal. 

(a) Assuming the grains are cubes of uniform size, graph the fraction of grain boundary atoms to 
total atom number for polycrystalline metals of average grain size 100 nm, 1 μm, 10 μm and 
100 μm. Here, you can assume the Bravais lattice of your favorite elemental metal, as this 
choice will not strongly affect your answer. 

(b) From the above analysis, would you specify the grain size as a critical parameter in your 
design of a polycrystalline metal to be used as baseball bats? If so, what is the ideal grain 
size? If not, what other mechanical and/or structural characteristics of the metal would you 
consider more important, and why? 

Solution to (a) and (b): 
•	 Many of you compared materials of differing grain size only by comparing the number 

of grain boundary atoms and interior atoms for a single grain. For an apples-to-apples 
comparison of grain size effects, it is important to realize that you must compare an 
equal TOTAL volume of material, as the number of grains within a unit volume of 
material will depend directly on grain size. 

•	 Let as assume a total material volume of 1 mm x 1 mm x 1 mm = V_tot = 1 mm3 (an 
arbitrary volume). Regardless of the choice of polycrystalline metal element,  

o	 the number of grains that fit into that volume is #grains = V_tot/V_grain = 
V_tot/d3, where d is the width of the cubic grains.  

o	 the number of grain faces = 6*#grains = 6V_tot/d3, where I don’t worry about the 
fact that the faces on the outside of the material cube shouldn’t count (they are 
small in number compared to the total number of grain faces. 

•	 Many cubic unit cells will fit into cubic grain, so 
o	 the number of unit cells per grain = d3/a3, where a is the lattice parameter of the 

unit cell. 
o	 The number of unit cell faces on each grain face = d2/a2 

•	 Many atoms will contribute to each grain face and each grain interior. If we choose my 
favorite metal, Cu, it is fcc with a unit cell (uc), so 

o	 the number of atoms on each face = 1center*1/2 + 4corner*1/8 = 1 atom/uc face 
o	 the number of atoms in each uc = 6face*1/2 + 8corner*1/8 = 4 atom/uc interior 

Now, the total number of atoms on the grain faces (grain boundaries) is then: 
#atoms on gbs  = #grains faces * #unit cell faces/grain face * #atoms/unit cell face 

= 6V_tot/d^3 * d^2/a^2 * 1 



= 6V_tot / da2 

#atoms inside grains = #grains * #unit cells/grain * #atoms/unit cell 
= V_tot/d^3 * d^3/a^3 * 4 

  = 4V_tot/a3 

Taking the ratio of #atoms on gbs / # atoms inside grains 
% on gb = 3a/2d 

Clearly, the %atoms on gb increases linearly as grain size decreases. This is shown on the graph 
below, on a log-log axis set. Here, I’ve assumed the lattice parameter of Cu, a = 0.361 nm. 
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Since for this application of a baseball bat I want to minimize energy dissipation, I also want to 
minimize the %atoms at the grain boundaries. This means I’d suggest the maximum possible 
grain size in order to minimize these dissipative losses in energy transfer to the baseball. 

However, here it is important to note that increasing the grain size will have other effects that 
may not be desirable. For example, as we’ll learn later, this will tend to decrease the yield 
strength of the metal baseball bat such that permanent deformation of the baseball bat would 
occur at lower stresses when it hits the ball. Also, since the goal in this application is to convert 
the stored elastic energy into kinetic energy of the baseball, I’d also want to choose a metal with 
large elastic modulus, E. As you see in Problem 5, U = (1/2)σε = (1/2)Eε2in the linear elastic 
region. Tungsten? No way - it’s stiff but it’s too dense (heavy) for this application. So, in fact I 
want to choose a metal with high E, low density ρ, low cost C if that’s a concern, and microscale 



grain sizes. I could capture the first three considerations in a material metric, finding a material 
that would maximize the quantity E/ρC (like aluminum, which is why baseball bats are often 
made from polycrystalline Al). This is called materials selection, which is often dictated at least 
in part by the required mechanical properties of the material for a specific application. 

2. As discussed in lecture (10.17.07), the Worm Like Chain (WLC) model of rubber elasticity 
has been used to analyze the deformation of DNA under uniaxial loading. Here, you can 
refer to the graphs distributed in that lecture (also on MIT Server).  

Bouchiat et al. used magnetic tweezers to extend lambda-DNA (λ-DNA), the structure of which 
you will analyze in 3.034 Lab 3, and applied the WLC model to infer its structure and 
resistance to bending. Below is a subset of the experimental data Bouchiat et al. reported, 
with additional points available on the published graph distributed in class (Bouchiat et al., 
Biophys J. (1999) Fig. 2). Apply the WLC model to determine the following: 

Applied force 
F [pN] 

Extension r 
[μm] 

5 x 10-2 5.6 
8.5 x 10-2 7.5 
1.8 x 10-1 10.1 
5.0 x 10-1 12.3 

2.0 14.0 
9.0 15.0 

(a) Graph these experimentally measured data as force on the chain vs. stretch of the chain, Fc 

vs. λc = r/ro where ro is the distance between chain ends before force is applied, and indicate 
the region over which the experimentally measured data is fit reasonably well by the WLC 
model. 

Solution: 
Many of you noted the values of Lp and Lc from the authors’ fit to these data, and/or 
obtained your own fit to these data by executing a fit with these values as initial guesses of 
Lp and Lc. The better your “starting guess” for these values, the closer your fit will 
approximate the authors’. The solution below assumes ignorance of Lc and Lp, and 
compares the values obtained with that of the authors. Note that, in practice, Lc can 
actually be calculated from knowledge of the structure of a polymer chain; Lp can only be 
estimated from experiments like this one, or from measurements of the lengths over which 
thermal fluctuations of the chain are uncorrelated in space and time. (We did not cover the 
latter approach in class, but it is consistent with the definition of Lp that we discussed in 
class.) 

The WLC model covered in class assumes a Gaussian distribution of chain end-end 
distances r, and thus predicts a fairly linear relationship between F and r. This linear 
relationship is observed only true for the low extension region and the high extension 
region, as the experimental data is highly nonlinear in between. The Gaussian assumption 
holds best in the low-extension region, however, because it is in this region that there is a 
“normal” distribution of chain end-end distances, unbiased by the application of force to 



these chains. For these data, the limit of a reasonable linear fit to the low extension data is 
at about the third data point, or F = 0.18 pN and r = 10 μm. 

Note that this fit was achieved by identifying the values of Lc and Lp that minimized the 
error between the WLC-predicted force and the experimental value of force over these three 
points (Lc = 8.6 μm; Lp = 25.6 nm) for kB = 1.38 x 10(-23) J/K and T = 298 K (room temp). 
As this was linear, the value of r_o was then identified via linear extrapolation (r_o = 1.95 
μm). This is an interesting deviation from our prediction that the force = 0 when r = 0, 
because although the time-space average value of r = 0 (if there is a statistical distribution 
of r), r was not equal to zero at the instant sampled by this experiment; the DNA chain  ends 
were about 1 micron apart. 
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Graphing this in terms of extension ratio, r/r_o, we see that the DNA end-end distance was 
increased about 7-fold under this pN-scale force: 
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(b) The number of nucleotides in this λ-DNA. 
Solution: The number of nucleotides that comprise this DNA is governed by the contour length 

or fully extended length of this DNA sample. According to the above WLC fit to the low-
extension region of the F-r response, Lc = 8.6 μm. We know right away that this is a poor 
estimate of Lc due to the Gaussian distribution P(r, n)dr, because the WLC force should 
tend toward infinity as r = Lc, and the experimental data indicates that this occurs at about 
15 um. Visually, the data indicate that Lc ~ 15 um. 

The number of nucleotides in this polynucleotide is then equal to the number that can fit in this 
length; if we assume this is single stranded DNA, we divide Lc by the size of one nucleotide, 
and if we assume this is double stranded DNA, we’d multiply that answer by two (2 
nucleotides in one basepair). You’d need to check out the paper to be sure (as I didn’t give 
you that information in the problem). 

The length of a single nucleotide (and, for that matter, a single basepair)  is 0.33 nm 
[Mandelkern M, Elias J, Eden D, Crothers D (1981). "The dimensions of DNA in solution". 
J Mol Biol 152 (1): 153–61.] 

Thus, the number of nucleotides in ssDNA would be 8600 nm/0.33 nm = 26,060 nucleotides; 
the number in dsDNA would be 52,121 nucleotides or 26,060 basepairs (bp). 

Note that this is in contrast to the estimates from the authors of the paper, as they 
assumed the nonlinear form of the WLC model and found from their fit that Lc = 15.6 um 
(which gives 47,272 nucleotides (for ssDNA); or 94,545 nucleotides or 47,272 basepairs 
(for dsDNA). As you’ll learn in 3.034 Lab 3, lambda-phage DNA is ~48,000 basepairs 
long, so my determination of contour length from this Gaussian/ low-extension region of 
the polynucleotide F-r response underestimated the actual length by about a factor of two. 

(c) The number of nucleotides that comprise a segment of the DNA that is significantly resistant 
to bending. 



Solution: This length is equivalent to the persistence length Lp, which my fit in (a) determined to 
be 25.6 nm. The number of nucleotides in ssDNA would be 25.6 nm/0.33 nm = 77 
nucleotides (rounding down to integer values), and would be 155 nucleotides in a dsDNA 
segment. 

Contrast this with the authors’ estimate: Lp = 51 nm Æ 154 nucleotides for ssDNA; again, we 
underestimate by a factor of two by fitting to only the Gaussian/low extension region. 

(d) The effective entropic spring constant of λ-DNA, ks. Note that this is often defined as the 
resistance to extension at large forces – why is this? (Hint: See inset graph of Smith and 
Bustamante’s work on DNA.) Compare your value to that stated by the Bouchiat et al., and 
explain why they expressed this stiffness in units of [N] instead of [N/m]. 

Solution: Although we could define the spring constant as the slope of the linear region in the 
low-extension region, the forces are so low in this region that they are essentially at the 
limit of measurable forces with existing instrumentation. As a result, there is a tendency to 
use “more reliable” data at higher forces/extensions. The entropic spring constant or slope 
to my fit shown in (a) is 2 x 10(-8) N/m. 

At low forces/extensions, the linear term r/Lc dominates; at  high forces/extensions, though, note 
that the quadratic term in our WLC equation dominates, or F ~ kT/Lp [4(1 – r/Lc)]-2, which 
can be rewritten as: 

 [F/(kT/Lp)]-1/2 = 4(1 – r/Lc), 

where you can see that the LHS of the equality is unitless [N * m / N-m/K * K] and the units on 
the RHS of the equality are also unitless [m/m]. Thus, one can obtain Lp and Lc via a 
linear fit to these data so plotted. Smith/Bustamante did this to demonstrate the linearity of 
the relationship at high force, and as a check on their fit. If one plots force [N]  vs. 
extension ratio r/ro or as r/Lc [m/m], the slope to the linear portion of this response, k,  is in 
units of only [N], not [N/m].  This is often presented as such to compare the effective 
stiffness of chains of different contour length Lc. 

To compare with Bouchiat et al.’s estimate of k (1.3 pN, stated on the graph), we could multiply 
our k by our Lc, so k = 2E(-8) N/m*8.6E(-6) m =1.72E(-13) N = 0.172 pN. Our fit to the 
low-extension region underestimates their k by an order of magnitude, but of course we’d 
expect that because we can visually see in (a)  that the rate of change of F vs. r is much 
greater at large forces/extensions (and, also, our Lc is ~2x too small – like the Grinch’s 
heart). 

(e) The minimal force required to break the phosphate ester bonds that join nucleotides in DNA? 

Solution: Here, we know that the force applied up to the contour length Lc only serves to uncoil 
the coiled DNA, and no force is transferred to the primary bonds like the phosphate ester 
bonds. The force required to load and break these primary bonds must be greater than the 



force required to achieve the fully extended polynucleotide, so F_min = F(r = Lc) or ~10 
pN. 

(f) The stretch λc = r/ro at which the WLC prediction diverges from that of the Freely Jointed 
Chain (FJC) model, by graphing the FJC prediction on the graph in (a), and the reasons for 
this divergence. 

Solution: Here, both WLC and FJC predict a linear relation between F and r, so both only fit 
reasonably well to the first few points given in the experimental data table. Below, the best fit of 
the FJC equation to these 3 points is given in orange (where Lc = 10 um and b = 92 nm). The 
WLC and FJC diverge from each other for increasing extension, r. Mathematically, this is 
because the quadratic r/Lc term in the WLC equation dominates. Physically, this is because the 
WLC incorporates the resistance to segment BENDING and ROTATION that the FJC model 
disallows (all segments rigid and straight over length b, between frictionless joints). 
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3.	 In Pset 3 (Question 1a), you were asked to analyze the stress state of an Al thin film that was 
to be used a metallization layer in an integrated circuit fabrication process.  You are now 
interested in predicting whether the film under this biaxial stress state will yield according to 
three different yield criteria: maximum normal stress (also called Rankine criterion); Tresca 
criterion; and von Mises or J2-flow criterion. Here, explicitly consider that the through-
thickness stress σzz = 0 as one of our three principal stresses.  Assume the yield strength of 
the Al film in uniaxial tension and compression σy = 100 MPa. 

(a)	 Determine whether the Al film will yield using each of the three yield criteria mentioned 
above. 

Solution: You went through a very similar problem in recitation. In Pset 2, we found that the 
principal normal stresses were σx=σ1 =100.3 MPa; σyy =σ2 =19.7MPa, and σzz =σ3 = 0MPa 



(plane-stress conditions). So now we are ready to use each of the yield criteria with each of 
the corresponding principal stress values: 


Maximum normal stress theory:  σmax = 100.3MPa > 100MPa = σy = 100MPa, so the Al 

film is predicted to yield.


Tresca yield criterion: According to the Tresca yield criterion, the material will yield when  

− =  =100MPa σ σ  σ  1 3 y 

− =  100.3 − 0 =100.3MPa >100MPaσ σ1 3 

Thus, according to the Tresca yield criterion, the Al film is expected to yield. 


Von Mises criterion: According to the Von Mises criterion, the material will yield when  


1 ⎡( − )2 + (σ  σ  − )2 (σ σ  )2 ⎤ = σ =100MPaσ σ  + −  
2 ⎣ 1 2 2 3 3 1 ⎦ y 

92.0MPa <100MPa 

Thus, according to the Von Mises yield criterion, the Al film is not expected to yield. 

(b) Graph the yield locus for each of the three different yield criterion on a graph of σ2/σy vs. σ1/ 
σy, where σ3=0. Which of the three criteria is the most conservative in predicting the stress 
state required for yielding? Which, if any, of the criteria is not suitable for the analysis of 
ductile materials such as aluminum? 

Solution: Here is a plot of the yield locus for each yield criterion, where the principal stresses 
have been normalized by the yield stress. A description of how to plot the Tresca and Von 
Mises loci is given by Hosford’s Mechanical Behavior of Materials, which is on page 13-3 
of your text reader. The maximum normal stress theory produces a square locus because if 
σ3 = 0, the material will yield when either ± σ1 or ± σ2 = σy (assuming the yield strength is 
the same in both tension and compression).  Normalizing these two equalities gives straight 
lines at σ1/ σy = ± 1 and σ2/ σy = ± 1 which connect to form a square. 



Yield Loci for Various Yield Criteria Under Plane Stress Conditions ( σ3 = 0) 

-1.5 

-1 

-0.5 

0 

0.5 

1 

1.5 

-1.5 -1 -0.5 0 0.5 1 1.5 

Von Mises 

Tresca 

Max Normal 

σ1/ σy 

σ2/ σy 

As seen form this graph, the Tresca yield criterion is the most conservative as it predicts the 
material will fail sooner than compared to the other criterion, except under uniaxial (σ1 = σ1; σ2 
= σ3 = 0) or equibiaxial (σ1 = σ2; σ3 = 0) loading conditions in which all three criteria predict the 
same yielding conditions. In the case of our plane stress condition, the Tresca and max normal 
stress theories predict the same yielding conditions if σ1 and σ2 are of the same sign (i.e. both 
tensile or compressive).  

The max normal stress theory is not well suited for ductile materials since it does not incorporate 
the magnitude of shear stresses into the yielding conditions.  As we will learn, the yielding 
response of materials which display plastic behavior (such as metals) depends largely on the 
magnitude of the shear stresses which cause dislocation motion inside the material. The 
maximum normal stress theory is only suitable for brittle materials which display very little or 
no plastic behavior and fail by fracturing mechanisms instead.  In this case the “yield” strength 
would be equal to the failure strength. 

(c) 	 Now assume that instead of a biaxial stress state, the Al film is under pure shear loading 
(only τ12 is nonzero). Considering the Tresca and von Mises criteria separately, what 
percentage of the material’s yield strength does an applied stress σa have to achieve in order 
to produce yielding under pure shear conditions? 

Solution: Under pure shear conditions,σ1 = -σ2 and σ3 = 0. If you do not understand why 
this is, you can draw Mohr’s Circle for this state and see that at the maximum shear stress, 
the magnitude of the two normal stresses goes to zero, thus leaving the material in pure 



shear. Plugging σ1 = -σ2 = σa (applied stress) and σ3 = 0 into the equations for the Tresca 
and Von Mises criteria gives: 

Tresca: ( σ ) =σ − −  σa a y 

2σ = σa y 

σ = 0.5σa y 

Von Mises: 

1 − −  2 σ 2 + −  2 

2 
⎡⎣(σ a ( σ a ))  + ( a ) ( σ a ) ⎤⎦ = σ y 

1 (6σ 2 ) = σ 
2 a y 

σ = .577σa y 

As was seen before, the Tresca criteria (σa=0.5σy) is more conservative and predicts that 
under pure shear the material will yield at a slightly lower percentage of the material’s 
yield strength as compared to the Von Mises criteria(σa=0.577σy) 

4. The stress states at which amorphous, glassy polymers such as polystyrene and polycarbonate 
yield are sensitive to pressure p = σii/3, where σii = I1, the first invariant of the stress tensor σij. 
Such polymers can yield either by shear band formation or by crazing. As a result, the biaxial 
stress states at which these polymers yield in compression is quite different from that in which 
they fail in tension, and the yield locus is not centered at (0, 0).  

(a) Based on your knowledge of how macromolecules would deform under compression vs. 
tension during shear band formation or crazing, predict whether you would expect yielding to 
occur at lower principal stresses in tension vs. in compression. 

(b) Based on this prediction, draw the von Mises yield locus for a material which shows 
pressure-insensitive yielding, and superpose on that graph the yield locus for polystyrene. Note 
that Mohr (of Mohr’s circle fame) was the first to note this tension/compression asymmetry, and 
this criterion is often called the Mohr-Coulomb failure criterion. 

Solution to both (a) and (b): The formation of both shear bands and crazes is sensitive to the 
extent of free volume or microscopic, open space in the material; shear bands require such space 
to move lots of molecular chains in concert in response to shear stress, and crazes require such 
space because they are fibrils of well aligned chains separated by pores of free space. Clearly, 
more free space is created in tension than in compression, and these microstructural changes 
required for yielding will occur more readily in tension. In fact, crazing actually only occurs in 
regions of high tension. Thus, yielding should occur for lower tensile stress states than for 



______________________________________________ 

compressive stress states. As a result, the yield locus is shifted downwards so the center is within 
quadrant III: 

Image removed due to copyright restrictions. Please see:
http://en.wikipedia.org/wiki/Image:MH_Surface_2D.png

[Source: http://en.wikipedia.org/wiki/Yield_surface#Mohr_-_Coulomb_yield_surface] 
Crazing actually further modifies the yield locus in the tensile region so that yielding occurs at 
lower stresses than does shear banding, and more readily under close to uniaxial tensile stresses 
(which favor chain alignment in one direction as required for crazing) than it does under close 
to biaxial tensile stresses (which are equivalent to pure shear in another axis set). This is the 
dotted line shown in the yield locus below: 

5. So many people were working on the prediction of metal yielding around WWI that the von 
Mises yield criterion has many names, including the J2-flow criterion, maximum shear 
deformation energy criterion, and maximum distortional energy criterion. Here you will show 
that you can calculate the von Mises yield criterion even if you do not know that J2 is the second 
invariant of the deviatoric stress tensor sij. 

(a) The strain energy density U of an elastically deformed material is the area under the uniaxial 
stress-strain response in the elastic region. Write an expression for U(σ, ε) for linear elastic, 
uniaxial deformation, as is typical of a metal. 
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Solution: U is the area under the linear-elastic region of the stress-strain curve, which is a 
triangle of height “stress” and base “strain”, or  

U = ½ σ*ε 

(b) Linear deformations are superposable, so now write U(σi, εi) assuming an applied triaxial, 
principal stress state. 

Solution: 
U = ½ σ1*ε1 + ½ σ2*ε2 + ½ σ3*ε3 

(c) Each of these strains εi can be expressed as εi (σi, E, ν), so now express U in terms of only σi, 
E, and ν. 

Solution: ε1 = 1/E[σ1 – ν[σ2 + σ3], and same idea for ε2 and ε3. Substituting these into (b) and 
rearranging, 

U = [1 / 2E] * [σ1
2 + σ2

2 + σ3
2 – 2ν(σ1σ2 + σ1σ3 + σ2σ3)] 

(d) This strain energy density is the sum of the energy to cause volume change and the energy to 
cause shape change (distortion), or U = Uv + Ud. Because the average stress (σavg = (σii/3 = 
σhydrostatic causes equal principal strains in all 3 directions, the volume change is due to σii/3, and 
the shape or distortional change is the rest  of the stress, or (σ1 – σii/3), (σ2 – σii/3), and (σ3 – 
σii/3). Now express the distortional strain energy density Ud (σi, E, ν) by replacing the total stress 
components in (c) with these distortional stress components. 

Solution: Since σii/3 = (σ1 + σ2 + σ3)/3, when we substitute in (σ1 – σii/3), (σ2 – σii/3), and (σ3 – 
σii/3) into the stress terms of (c), we can simplify to obtain 

Ud = [(1 + ν) / (3*2E)] * [(σ1 - σ2)2 + (σ2 - σ3)2 + (σ3 - σ1)2] 

(e) von Mises criterion says that the material failure occurs when this distortional energy for 
some arbitrary σij reaches the value that would be attained at yielding under uniaxial loading, or 
when Ud = (Ud)y. Consider the case of plane stress (σ3 = 0), and equate Ud with that attained for 
yielding in uniaxial tension (Ud)y to derive an expression for σy(σ1, σ2). As a check, this should 
be the equation of the ellipse that defines the von Mises yield locus! 

Solution: Assuming s3 = 0 in (d), we obtain: 
Ud = [(1 + ν) / (3E)] * [σ1

2 - σ1σ2
2 + σ2

2] 

If we applied only uniaxial tension σ1 to the point of yielding, σ1 = σy so we obtain: 
(Ud)y = [(1 + ν) / (3E)] * [σy

2] 

Equating the two expressions, [σ1
2 - σ1σ2

2 + σ2
2] = [σy

2], which is the equation of an ellipse 
centered at (0, 0) that defines the von Mises yield locus. 


