
3.032 Practice Problem Set

Fall 2006


Solutions posted: End of lecture, 11/06/06


1. Your colleague is using the following viscoelastic model to predict a material’s behavior: 
two Kelvin-Voigt models in series with each other and with a single spring. What is the 
effective stiffness of this arrangement at short time scales / high strain rates? At long time 
scales / low strain rates? 

SOLUTION: At high strain rates, dashpots act like rigid connections, and springs act like 
springs. At early times and high strain rates, the effective stiffness is therefore that of the 
sole spring; the two K-V elements are effectively rigid and do not displace. 

Conversely, at long times and low strain rates, dashpots act as though they are not even 
connected, so the effective stiffness is that of three springs in series. 

2. Find the maximum difference (x%)in magnitude between the stress state that will produce 
plastic failure (yielding) of a metal according to the Tresca criterion or to the von Mises 
criterion. This is the location on the yield surface where the two surfaces are furthest apart. 

SOLUTION: The maximum difference between these two cases occurs for pure shear. On 
the yield surface diagram, this is the diagonal line that bisects quadrants 2 and 4. If we 
insert this stress state into the two criteria, we obtain different magnitudes of the shear stress 
magnitude σ13 that will be sufficient to cause failure by yielding. 

Tresca says: σ13 = σy/2; von Mises says: σ13 = σy/ 
√

3. 

Thus, the magnitudes differ by ≈13%, with Tresca being the more conservative criterion 
(i.e., lower stress required to meet the condition for failure by yielding). 

3. Consider a material that is about to experience uniaxial loading of a magnitude sufficient to 
make the material yield. Could you prevent the material from yielding by applying loads on 
other axes? How? Why does this work? 

SOLUTION: See John Maloney’s /Resources for a nice discussion of 
Tresca related to this point. Recall that the yield criteria we covered relate the difference 
between maximum and minimum normal principal stresses (Tresca) or the difference among 
all three principal stresses (von Mises) to the magnitude of the yield stress. Intuition may 
tell you that adding more stress to a material will surely bring on failure, but if that stress 
decreases the difference between two principal stresses, it can actually prevent failure. 

4. The stiffness matrix component C45 is shorthand for C2313 in the full stiffness tensor. How
ever, the compliance matrix component S 45 equals not S 2313 but 4S 2313. Show why by writing 
out �4 (using �i = S i jσ j) and its equivalent 2�23 (using �i j = S i jklσkl). 

Explain why this doesn’t happen with the stiffness matrix. 

SOLUTION: By expanding the indicial notation, 

ε4 = S 41σ1 + S 42σ2 + S 43σ3 + S 44σ4 + S 45σ5 + S 46σ6 
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Its equivalent, 2ε23, is expanded as 

2ε23 = 2(S 2311σ11+S 2312σ12+S 2313σ13+S 2321σ21+S 2322σ22+S 2323σ23+S 2331σ31+S 2332σ32+S 2333σ33) 

Using the fact that σi j = σ ji, we note that the coefficients of the equivalent stress components

σ5 and σ13 are S 45 and 4S 2313, respectively. These coefficients must also be equivalent.


In general, S ab = S i jkl for a and b both equal to 1, 2, or 3; S ab = 4S i jlk for a and b both equal

to 4, 5, and 6; and S ab = 2S i jkl for all other cases (S 14, for example). In contrast, Cab always

equals Ci jkl, which can be seen by expanding σa = Cabεb and σi j = Ci jklεkl.


As noted in Monday’s review session, the 4 in the 4S 2313 comes from two factors of 2: The

first is from the fact that ε4 = 2ε23, due to the factor of two relationship between engineering

shear strain ε4 and tensorial shear strain ε23. The second factor of 2 is from the fact that

S 2313 = S 2331, a fact you proved in PS5 using the four Kronecker deltas for Ci jkl, and you

already know that σ13 = σ31 from equilibrium. So when we write out ε23 = S 23klσkl, we get

S 2313σ13 + S 2331σ31 = 2S 2313σ13.


5. Which of the following are easy slip plane / slip direction combinations for a copper crystal? 

(a) (111), [110] 

(b) (11-1), [00-1] 

(c) (101), [11-1] 

(d) (100), [0-11] 

SOLUTION: None of them. Remember that a slip system is a slip plane and a direction on

that plane. Typically, the primary slip system is the close-packed plane and a close-packed

direction on that plane. For Cu (fcc), this will be the {111} �110� system. However, specific

directions must be ON specific planes, which means that the dot product of the slip plane

normal (which is oriented 90o to the slip plane) and the slip direction must be zero (cos(90o)

= 0).


For a cubic system, it turns out that the slip plane normal has the same indices as the slip

plane itself (here, the slip plane normal is �111�). However, the dot product of some of the

above combinations is not zero. For example, the first one would be:


[111]dot[110] = (1 + 1 + 0)/(
√

3
√

2) = 2/ 
√

6 � 0 (1) 

Same deal for the second combination. The last two are also not the easy slip systems

because, although the dot product is zero, these are not the close-packed planes of fcc.


6. What is the relationship (both direction and magnitude) between b and a for an fcc crystal? 
A bcc crystal? 

SOLUTION: For an fcc crystal, we covered this in lecture on 10.30.06. Looking at the (100)

plane and assuming r is the atomic radius of a hard-sphere model of the fcc crystal, we see

that


4r = 
√

2a2 (2) 
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or a = 2
√

2r. We know that b is the vector that defines unit slip in the close-packed direction, 
so b = 2 

a �110� = a .√
2

For a bcc crystal, we know the atoms touch along the �111� or body-diagonal direction, so 
here a = 4r and b = 2 

a �111� = 
√

2
3a .√
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7. Your chemist friend is puzzled by a question of crystal symmetry: “A cubic material has the 
same stiffness in all three axes 1, 2, and 3, and an isotropic material has the same stiffness in 
all three axes 1, 2, and 3. So what’s the difference?” How would you answer? 

SOLUTION: One answer would be: 

“You’re right that the properties measured along three different axes may be numerically 
equal if the material is cubic or isotropic. However, that would be a special case in a cubic 
material, such that if I rotated the material and took measurements along a different three (yet 
still orthogonal) axes, the value in the second experiment need not equal the value obtained 
in the first. 

In general, an isotropic material is an idealized case where the properties are independent 
of the direction in which they were measured, so it would not matter how I rotated a repre
sentative volume element of that material – I would ALWAYS measure the same value of a 
given property. A cubic material has a structure and properties that are defined by the orien
tation of the atoms. 
vectors defining that unit cell, all the properties measured will be independent of direction. 

If the 1, 2, and 3 directions of my measurement are equal to the �100� 

However, those that I measured along a rotated set of orthogonal vectors (e.g., �110�) would 
not necessarily be equal to the values I measured along the �100�. 

So you see, my chemist friend, the properties of the cubic material are defined by the struc
ture of the material (the arrangement of the atoms in the unit cell). The properties of the 
isotropic material are assumed independent of the arrangement of the atoms.” 
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