LECTURE 11: COLLOIDS AND INTERPARTICLE POTENTIALS

Outline :LAST LECTURE : MOLECULE- PLANAR SURFACE INTERACTIONS2COLLOIDS : DEFINITIONS AND APPLICATIONS 3
DERIVATION OF SPHERE-PLANAR SURFACE POTENTIAL 4
SPHERE-PLANAR SURFACE VDW INTERACTIONS AND HAMAKER CONSTANT 5
ANALYTICAL FORMULAS FOR VDW INTERACTIONS FOR OTHER GEOMETRIES 6
COLLOIDAL STABILITY 7-8
Other Long Range Forces 8
Effect on Dispersion 8

Objectives: To derive mathematically the sphere-surface potential and to understand other longrange interparticle forces and how they determine colloidal stability

Readings: "Colloidal Processing of Ceramics", J. A. Lewis, J. Am. Ceram. Soc. 83 (10) 2341-59. 2000.

Multimedia : Podcast : Briscoe, et al. Nature 2006 444, 191-194. It can wait until Spring Break if you want \rightarrow won't be covered on exam, but will be on next pset which will be due a week or so after Spring break.

MIDTERM: Everything up through today's lecture will be covered on exam.

MOLECULE-PLANAR SURFACE INTERACTIONS

-Motivation : Molecular Origins of Biocompatibility
-Calculation of the Net Potential for Interacting Bodies; Volume Integration Method; procedures and assumptions

1) Choose the mathematical form of the interatomic/ionic/molecular potential, $w(r)$ (e.g. assume an arbitrary power law : $\left.w(r)=-A r^{-n}\right)$
2) Set up the geometry of the particular interaction being derived (e.g. molecule-surface, particle-surface, particle-particle, etc.)
3) Assume "pairwise additivity"; i.e. the net interacion energy of a body is the sum of the individual interatomic/intermolecular interactions of the constituent atoms or molecules which make up that body
4) A solid continuum exists : the summation is replaced by an integration over the volumes of the interacting bodies assuming a number density of atoms/molecules $/ \mathrm{m}^{3}, \rho$
5) Constant material properties: ρ and A are constant over the volume of the body \rightarrow volume integration: $W(D)=\iiint w(r) \bullet \rho d V$

Geometry:

z = direction perpendicular to the sample surface
D (nm) = normal molecule-surface separation distance
$\mathbf{x}(\mathrm{nm})=$ direction parallel to sample surface $=$ circular ring radius (m)
A = infinitesimal cross-sectional area $\left(m^{2}\right)=d x d z$
$\mathbf{V}=$ ring volume $\left(\mathrm{m}^{3}\right)=2 \pi x(\mathrm{dxdz})$
$\mathbf{N}=\#$ of atoms within the ring $=\rho(2 \pi x) d x d z$
$\rho=$ number density of atoms in the material constituting the surface (atoms $/ \mathrm{m}^{3}$)
$r=$ distance from molecule to differential area
$W(D)_{M O L-S F C}=\frac{-2 \pi A \rho}{(n-2)(n-3) D^{n-3}}$
$n=$ determined by the type of interaction; related to the range of the interaction
$A=$ molecular level parameter; related to strength of the interaction
$\rho=$ atomic density
$W(D)_{M O L-S F C}=\frac{-2 \pi A \rho}{(n-2)(n-3) D^{n-3}}$
London Dispersion Interactions $n=6 ; W(D)_{M O L-S F C}=\frac{-\pi A \rho}{6 D^{3}}$
$F(D)_{M O L-S F C}=\frac{\partial W(D)}{\partial D}=\frac{-\pi A \rho}{2 D^{4}}$

COLLOIDS : DEFINITION AND APPLICATIONS

Colloid; Definition : Particles that possess at least one dimension $10 \mathrm{~nm}-1 \mu \mathrm{~m}$, usually dispersed in a fluid medium, called a "colloidal suspension" (e.g. smoke, paint, cosmetics, fog, dust, milk, blood, pharmaceutical powders) \rightarrow contact area between particles and the dispersing medium is large \rightarrow interparticle surface forces determine macroscopic behavior
"Colloidal Inks"- highly concentrated, stable, dispersed colloidal suspension with appropriate viscoelastic properties so that it can flow through a nozzle attached to a robotic set-up used to print 3D structures. After the ink exits from the nozzle, it will "set" via a fluid-to-gel transition induced by a variety of stimuli such as drying, pH , ionic strength, or solvent quality.

This involves the concept of "percolation"- critical volume fraction above which the system is capable of sustaining Percolation a stress, continuous pathway through entire material \rightarrow processes final and mechanical properties tailored by interparticle surface forces

Photos removed due to copyright restrictions. See Figure 7 in Smay, et al. Langmuir 2002, 18, 5429.

SEM images of 3D Periodic structures composed of colloidal "building blocks."

New applications:

-Tissue Engineering
-Advanced Ceramics
-High performance Composites
(Smay, et al. Langmuir 2002, 18, 5429)

DERIVATION OF SPHERE-PLANAR SURFACE POTENTIAL

Photo of sphere on AFM tip removed due to copyright restrictions.

$$
\begin{aligned}
& W(D)_{\text {SPHERE-SFC }}=\int_{\substack{z=0}}^{z=2 R} \underbrace{W(D)_{\text {nol-SEC }}(\mathrm{D}+z)}_{\begin{array}{c}
\text { Potential of each atom/molecule } \\
\text { with all atoms / molecules of planar } \\
\text { surface }
\end{array}} \rho \pi(2 \mathrm{R}-z) z d z \\
& W(D)_{\text {MOL-SFC }}=\frac{-2 \pi A \rho}{(n-2)(n-3) D^{n-3}} \\
& W(D)_{\text {SPHERE-SFC }}=\frac{-2 \pi^{2} A \rho^{2}}{(n-2)(n-3)} \int_{z=0}^{z=2 R} \frac{(2 \mathrm{R}-z) z d z}{(\mathrm{D}+z)^{\mathrm{n}-3}}
\end{aligned}
$$

For $D \ll R$, only small values of z contribute to the integral

$$
\begin{aligned}
W(D)_{\text {SPHERE-SFC }} & =\frac{-2 \pi^{2} A \rho^{2}}{(n-2)(n-3)} \int_{z=0}^{z=\infty} \frac{2 \mathrm{Rz} d z}{(\mathrm{D}+z)^{\mathrm{n}-3}} \\
W(D)_{\text {SPHERE-SFC }} & =\frac{-4 \pi^{2} A \rho^{2} \mathrm{R}}{(n-2)(n-3)(n-4)(n-5) \mathrm{D}^{n-5}} \\
n=6(V D W) & =\frac{-\pi^{2} A \rho^{2} \mathrm{R}}{6 \mathrm{D}}
\end{aligned}
$$

Chord Theorum $=x^{2}=(2 R-z) z$
Area $=\pi x^{2}$, Volume $=\pi x^{2} d z$
$N=$ number of atoms $=\rho \pi x^{2} d z=\rho \pi(2 R-z) z d z$

SPHERE-PLANAR SURFACE VDW INTERACTION AND HAMAKER CONSTANT

$W(D)_{\text {SPHERE-SFC }}(V D W, n=6)=\frac{-\pi^{2} A \rho^{2} \mathrm{R}}{6 \mathrm{D}}$
$w(r) \sim \mathrm{r}^{-6}, \mathrm{~W}(\mathrm{D})_{\text {MOL-SFC }} \sim \mathrm{D}^{-3}, \mathrm{~W}(\mathrm{D})_{\text {SPHERE-SFC }} \sim \mathrm{D}^{-1}$
"Hamaker Constant":
$\mathbf{A}=\pi^{2} A \rho^{2}$ (sphere and surface are the same material)
$\mathbf{A}=\pi^{2} A \rho_{1} \rho_{2}$ (sphere and surface are different materials)
$\mathbf{A} \sim 10^{-19} \mathrm{~J}$
$W(D)_{\text {SPHERE-SFC }}(V D W, n=6)=\frac{-\mathrm{AR}}{6 \mathrm{D}}$
$F(D)_{\text {SPHERE-SFC }}(V D W, n=6)=-\frac{\partial \mathrm{W}(\mathrm{D})}{\partial \mathrm{D}}=\frac{-\mathrm{AR}}{6 \mathrm{D}^{2}}$

ANALYTICAL FORMULAS FOR VDW INTERACTIONS FOR OTHER GEOMETRIES

Type of Interaction	Schematic	Interaction Potential
atom-atom molecule-molecule	$\underset{\longleftrightarrow}{\longleftrightarrow} \xrightarrow{\longrightarrow}$	$w(r)=-A r^{-6}$
two parallel chain molecules		$w(r)=-\left(\frac{3 \pi A L}{8 \sigma^{2}}\right) r^{-5}$
atom-planar surface molecule-planar surface		$W(D)=-\frac{\pi \mathbf{A} \rho}{6 \mathrm{D}^{3}}$
sphere-planar surface		$W(D)=-\frac{\mathrm{AR}}{6 \mathrm{D}} \rightarrow \mathrm{A}$ can be a fitting parameter for example in a Force vs. Distance AFM experiment
sphere-sphere	$\rho_{1} \overbrace{1} \xrightarrow{R_{2}} \rho_{2}$	$W(D)=-\frac{\mathbf{A}}{6 \mathrm{D}} \frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)}$
planar surface-planar surface		$W(\mathrm{D})=-\frac{\mathbf{A}}{12 \pi \mathrm{D}^{2}}$ per unit area
two parallel cylinders two crossed cylinders		$W(D)=-\frac{\mathbf{A L}}{12 \sqrt{2} \mathrm{D}^{3 / 2}}\left(\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}\right)^{1 / 2}, W(D)=-\frac{\mathbf{A} \sqrt{\mathrm{R}_{1} \mathrm{R}_{2}}}{6 \mathrm{D}}$

COLLOIDAL STABILITY : OTHER LONG RANGE FORCES

$$
W(D)=W(D)_{\text {VDW }}+W(D)_{\text {ELECTROSTATIC }}+W(D)_{\text {STERIC }}+W(D)_{\text {STRUCTURAL }}-W(D)_{\text {DEPLETION }}
$$

"Electrostatic Double Layer Repulsion" : for charged particles, this force arises from a diffuse, highly mobile surface layer of counterions; an exponential repulsion exists on compression since which is entropic in origin (actually not electrostatic) since the counterions want to retain their translational mobility

$$
W(D)=W(D)_{V D W}+W(D)_{\text {ELECTROSTATIC }}
$$

"DLVO Theory"-Derjaguin, Landau, Verwey and Overbeek
"Steric Repulsion": For macromolecules attached to a colloid, they maintain some equilibrium conformation, any deviation away from this equilibrium conformation, for example upon compression, results in a nonlinear repulsion. For stabilization, the macromolecular layers must be of sufficient thickness and density to overcome VDW forces ($\delta=$ layer thickness)
"Electrosteric" interactions \rightarrow polyelectrolytes (electrostatics and sterics both contribute and in fact, are coupled to each other)- USED IN BIOLOGY
"Structural Repulsion" \rightarrow repulsion arising from other nonadsorbed species in the media, e.g. small nanoparticles

Figure by MIT OCW.
After Lewis. J Am Ceram Soc 83, no. 10 (2000): 2341-59.

COLLOIDAL STABILITY: EFFECT ON DISPERSION

"Depletion Interaction" : For entropic reasons the chains avoid the space between two close particles, or between a particle and a planar wall, and create an effective attraction among the colloid particles.

Dispersed state : repulsive energy barrier $\gg k_{B} T$ Weakly Flocculated : well depth $\sim 2-20 \mathrm{k}_{\mathrm{B}} T$ Strongly Flocculated : deep primary minimum
-e.g. Dispersion of nanotubes

Figure by MIT OCW.
After Lewis. J Am Ceram Soc 83, no. 10 (2000): 2341-59.

