LECTURE 14: THE ELECTRICAL DOUBLE LAYER (EDL)

Outline :

REVIEW LECTURE #11 : INTRODUCTION TO THE ELECTRICAL DOUBLE LAYER	2
SURFACE CHARGE : WHERE DOES IT COME FROM?	
THE ELECTRICAL DOUBLE LAYER	4-7
General Definition	4
General Mathematical Formulation	5
Possion-Boltzmann(P-B) Formulation	6
P-B Formulation for a Monovalent Electrolyte	7
Potential Profile for Two Interacting EDLs	7

Objectives: To understand the qualitative origins and mathematical foundations for the electrical double layer

Readings: Course Reader Documents 24 and 25

Multimedia : Boundary Lubrication Podcast, Briscoe, et al. Nature 2006 444, (191 - 194)

REVIEW LECTURE #11 : INTRODUCTION TO THE ELECTRICAL DOUBLE LAYER

$$W(D) = W(D)_{VDW} + W(D)_{ELECTROSTATIC} + W(D)_{STERIC} + W(D)_{STRUCTURAL} - W(D)_{DEPLETION}$$

 $\perp W(D)$

"Electrostatic Double Layer Repulsion" : for charged particles, this force arises from a diffuse, highly mobile surface layer of counterions; an exponential repulsion exists on compression since which is entropic in origin since the counterions want to retain their translational mobility

 $W(D) = W(D)_{VDW} + W(D)_{ELECTROSTATIC}$

"DLVO Theory"-Derjaguin, Landau, Verwey and Overbeek

- 1. Colloidal /Nanoparticle Stability Dispersion
- 2. Biocompatibility

W(D) - W(D)

3. Tissue Nanomechanics: Cartilage

Figure by MIT OCW. After Lewis. *J Am Ceram Soc* 83, no. 10 (2000): 2341-59. 3.052 Nanomechanics of Materials and Biomaterials Thursday 04/05/07

 pK_{a}

SURFACE CHARGE : WHERE DOES IT COME FROM? Net Surface Charge (Fixed Charge Groups on Surface) : Group Acid _____ Base + H 1. Direct ionization or dissociation of surface chemical groups, e.g. Terminal carboxyl weak acid : COOH \rightarrow COO⁻+H⁺ (dependent on pH) R⁻ ΌH aspartic acid or 149 pm glutamic acid strong acid : sulfate SO_4^{2-} (independent of pH) Histidine coo⁻ CH₂OH Terminal Amino NHCOCH₂ cartilage glycoaminoglycan (chondroitin-6-sulfate) Cysteine 2. Adsorption (binding of ions) via van der Waals, hydrophobic, or ionic Tyrosine interactions, e.g. lipids, polyelectrolytes (charged polymers)

THE ELECTRICAL DOUBLE LAYER (EDL): GENERAL DEFINITION

-*Electroneutrality* maintained; # of counterions= # of surface charge groups + # of bulk coions

Diffuse Layer : atmosphere of mobile counterions in rapid motion, attractive ionic forces pulling them to surface (electrical migration force) causes concentration gradient, gain translational /rotational entropy by moving away from surface (diffusion down the concentration gradient)→these effects are balanced so their is no net flux of any ionic species

Stern or Helmholtz Layer : bound, usually transiently, thickness is a few Å, reflects the size of the charged surface groups and bound counterions \rightarrow do not completely neutralize the surface charges

When two similarly charged electrical double layers are compressed together and overlap $(D_1 < D_2)$, repulsive force—entropic/osmotic, deviating the system from its minimum

energy equilibrium configuration

C_{ES}= electrostatic prefactor analogous to the Hamaker constant for VDW interactions

 κ^{-1} = Electrical Debye Length (characteristic decay length of the interaction)- will be defined more rigorously later on \rightarrow rule of thumb : range of the electrostatic interaction ~ $5\kappa^{-1}$

THE ELECTRICAL DOUBLE LAYER : POISSON-BOLTZMANN (P-B) FORMULATION <u>Assumptions;</u> ions are point charges (don't take up any volume, continuum approximation), they do not interact with each other, uniform dielectric; permittivity independent of electrical field, electroquasistatics (time varying magnetic fields are negligibly small)

Start with Poisson's Law, relation between electrical potential, Ψ (Volts), at any point within a diffuse space charge region of volume charge density, ρ (C/m³), is ;

$$\nabla^2 \psi = -\frac{\rho}{\varepsilon}; \varepsilon = \text{permittivity}, \nabla^2 \psi = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$$

1D Case, $z \perp$ to charged surface:

$\frac{d^2\psi(z)}{2}$	$-\frac{1}{\sum} \sum_{r=1}^{n} \sum_{r=1}$	$\exp \frac{-z_i F \psi(z)}{2}$
dz^2	$\mathcal{E}_{i}^{\mathcal{L}_{i}} \mathcal{E}_{io}^{\mathcal{L}_{i}}$	RT

Boltzmann Ion Distribution; thermodynamic equilibrium, describes variation of ion concentration in electric field 1D General P-B Equation, describes EDL, defines potential as a function of z in a spatial charge distribution

```
R = Universal Gas Constant = 8.314 J/K mole
```

```
T = Temperature (K)
```

F = Faraday Constant (96,500 Coulombs/mole of electronic charge)

```
c_{io} (moles/cm<sup>3</sup> or mole/L = [M]; 1ml = 1cm<sup>3</sup>) = electrolyte ionic strength (IS) =
```

bulk concentration of the ith species, ideally for $x \rightarrow \infty$, but practically just far

enough away from surface charge region, several Debye lengths away

 z_i = electrolyte valence of ith ion

Prof. C. Ortiz, MIT-DMSE

THE ELECTRICAL DOUBLE LAYER : POISSON-BOLTZMANN (P-B) FORMULATION FOR A MONOVALENT ELECTROLYTE

For Na⁺, Cl⁻ (monovalent 1:1 electrolyte solution)

$$\sinh(x) = \frac{e^x - e^{-x}}{2}; \frac{d^2\psi(z)}{dz^2} = \frac{2Fc_o}{\varepsilon} \sinh \frac{F\psi(z)}{RT}$$

2nd order nonlinear differential eq.;

Linearize when
$$\frac{F\psi(z)}{RT} \ll 1 \text{ or } \psi \ll 60 \text{ mV}$$

"Debye-Huckel Approximation"

 $\frac{d^2\psi(z)}{dz^2} \approx \frac{2F^2c_o\psi(z)}{\varepsilon RT} = \kappa^2\psi(z) \ (*) \ \text{linear differential equation}$ where : $\kappa^{-1} = \sqrt{\frac{\varepsilon RT}{2z^2F^2c_o}}$

 κ^{-1} (nm) = Debye Length = is more specifically defined as the distance over which the electric field and potential decay to (1/*e*) of their value at x = 0

Solution to (*): $\psi(z) = \psi(0)e^{-\kappa z} + K$

 $\psi(z) =$ electrical potential

 $\psi(0) = \psi_s$ = surface potential (x = 0) = constant

K = integration constant, Boundary Conditions; $\psi(\infty) = 0, K = 0$

rule of thumb : range of the electrostatic interaction ~ $5\kappa^{-1}$

IS [M]	k ⁻¹ (nm)
10 ⁻⁷ (pure water)	950
[H ⁺]=[OH⁻]	
0.0001[NaCl]	30
0.001 [NaCl]	9.5
0.01 [NaCl]	3.0
0.15 [*] [NaCl]	0.8
1 [NaCl]	0.3 (not
	physical!)

*physiological conditions

COMPARISON OF NONLINEAR AND LINEAR P-B SOLUTIONS

ELECTRICAL POTENTIAL PROFILE FOR TWO INTERACTING EDLs

