LECTURE 20: THEORETICAL ASPECTS OF SINGLE MOLECULE FORCE SPECTROSCOPY 2 : EXTENSIBILITY AND THE WORM LIKE CHAIN (WLC)

Outline :

REVIEW LECTURE #19 : THEORETICAL FORMULATIONS FOR THE ELASTICITY OF SINGLE POLYMER CHAINS (FJC)	2
VARIOUS MATHEMATICAL FORMS FOR THE INEXTENSIBLE FJC- GRAPHICAL COMPARISON	3
EFFECT OF a AND n on INEXTENSIBLE FJC	4
EXTENSIBLE FJC	5
WORM LIKE CHAIN (WLC) MODEL	6
FITS TO EXPERIMENTAL SINGLE MOLECULE FORCE SPECTROSCOPY DATA	7

Objectives: To understand how extensibility of chain segments affects the FJC elasticity model and to understand the differences between the FJC and WLC models

Readings: Course Reader Document 31, CR Documents 32-39 are the original theoretical papers for reference, English translations of CR 33 and 36 are available as handouts.

Multimedia : Podcast : Sacrificial Bonds in Biological Materials; Fantner, et al. *Biophys. J.* **2006** 90, 1411

3.052 Nanomechanics of Materials and Biomaterials Tuesday 05/01/07

Prof. C. Ortiz, MIT-DMSE

COMPARISON OF VARIOUS MATHEMATICAL FORMS FOR THE INEXTENSIBLE FREELY JOINTED CHAIN (FJC) MODEL

Surface separation distance, D= r, chain end-to-end distance; sign convention (-) for attractive back force, however some scientists plot as (+); e.g. Zauscher (podcast)

- (1) Gaussian physically unrealistic; force continues to increase forever beyond L_{contour}, valid for r,D<1/3 L_{contour}
- (3) Langevin Series Expansion; finite force beyond L_{contour} (physically unrealistic); valid for r,D<3/4 L_{contour}
- (4) High stretch approximation underestimates force for r,D<3/4L_{contour}, valid for r,D>3/4L_{contour}

Gaussian : $f(r) = \left(\frac{3k_BT}{na^2}\right)r$

(*left*) Elastic force versus displacement as a function of the statistical segment length, a, for the non-Gaussian FJC model ($L_{contour} = 200 \text{ nm}$) and (*right*) elastic force versus displacement as a function of the number of chain segments, n, for the non-Gaussian FJC model (a = 0.6 nm)

- Take into account a small amount of longitudinal (along chain axis) enthalpic deformability (monomer/bond stretching) of each statistical segment, approximate each statistical segment as a linear elastic entropic spring (valid for small deformations) with stiffness, $k_{segment} \rightarrow$ springs is series, forces are equal, strain additive;

 $k_{segment}$; $f_{segment} = k_{segment} \delta_{segment}$ solve for: $\delta_{segment} = f_{segment}/k_{segment}$

Add displacement term to L_{contour}:

$$L_{\text{total}} = \underbrace{L_{\text{contour}}}_{=\text{na}} + \underbrace{n\left(\frac{f}{k_{segment}}\right)}_{\text{extension beyond } L_{\text{contour}}}_{\text{due to enthalpic stretching of chain segments}}$$

n= number of statistical segments
$$f(r) = \left(\frac{k_{\text{B}}T}{a}\right) \mathscr{I}^{1}\left(\frac{\mathbf{r}}{L_{\text{total}}}\right)$$

Now we have three physical (fitting) parameters;

a, n, k_{segment}

Schematic of the stretching of an extensible freely jointed chain and (b) the elastic force versus displacement for the extensible compared to non-extensible non-Gaussian FJC (a = 0.6 nm, n = 100, $k_{segment}$ = 1 N/m) - note units

3.052 Nanomechanics of Materials and Biomaterials Tuesday 05/01/07

WORM LIKE CHAIN (WLC) MODEL

(*Kratky-Porod Model)

"Directed random walk"- segments are correlated, polymer chains intermediate between a rigid rod and a flexible coil (e.g. DNA)

- takes into account both local stiffness and long range flexibility

-chain is treated as an isotropic, homogeneous elastic rod whose trajectory varies continuously and smoothly through space as opposed to the jagged contours of the FJC

p= persistence length, length over which statistical segments remain directionally correlated in space

Interpolation Formula:
$$f(r) = \left(\frac{k_{\rm B}T}{p}\right) \left(\frac{r}{L_{\rm contour}} + \frac{1}{4\left(1 - \frac{r}{L_{\rm contour}}\right)^2} - \frac{1}{4}\right)$$

-WLC stiffer at higher extensions, force rises sooner than FJC since statistical segments are constrained, can also make an extensible form of WLC \rightarrow replace L_{contour} by L_{total} as before for FJC

-In reality the FJC and WLC are very similar and just produce slightly different values of the local chain stiffness

FITS TO EXPERIMENTAL SINGLE MOLECULE FORCE SPECTROSCOPY DATA

AFM retract data on single polymer chain of polystyrene in toluene; comparison to Freely-Jointed Chain Model (a = 0.68 nm) - right plot aata normalized by L_{contour} to create a master plot

