LECTURE 3: ADDITIONAL NANOMECHANICS INSTRUMENTATION COMPONENTS

Outline :

NANOMECHANICS ART FROM HOLLAND	2
LAST TIME : THE FORCE TRANSDUCER: How can we measure such tiny forces?	3
TRANSDUCER (SPRING CONSTANT) CALIBRATION	4
MECHANOTRANSDUCTION EXAMPLES	5-6
Mapping the mechanical pulse of single cardiomyocytes	5
Intracellular calcium waves in 2D bone cell networks as a single cell is loaded	6
HIGH RESOLUTION DISPLACEMENT DETECTION : Optical lever beam deflection technique	7
HIGH RESOLUTION DISPLACEMENT CONTROL : How can we move an object one nanometer at a	l.
time?	8
PIEZOELECTRICITY	9
PIEZO TUBE SCANNERS	9

Objectives: To describe the function of other instrumentation components necessary for nanomechanical experiments; lasers and piezos.

Readings: Course Reader Document 9

Multimedia : Listen to Lipid Bilayers podcast : http://web.mit.edu/cortiz/www/Nanonewton.html

NANOMECHANICS ART FROM HOLLAND

Jacob Kerssemakers Ph.D. Thesis U. Groningen (NL)

Image removed due to copyright restrictions.

LAST TIME : THE FORCE TRANSDUCER- HOW CAN WE MEASURE SUCH TINY FORCES?

i.e. nN (=1•10⁻⁹ N), even pN (=1•10⁻¹² N) ! \rightarrow typical engineering structures are Newtons

microfabricated cantilever beams

force transducer- sensor device that responds to an external force where you can output and record that response

- continuum beam theory : reduces to Hooke's Law

k= cantilever spring constant

-attachments to nanosized probe tips at the ends of microfabricated cantilevers

-limit of force detection given by thermal oscillations→ can represent cantilever as driven, damped simple harmonic oscillator

TRANSDUCER (SPRING CONSTANT) CALIBRATION

- determine the relationship between the externally applied force and output signal to automatically convert to a force

3.052 Nanomechanics of Materials and Biomaterials Tuesday 02/13/07

Prof. C. Ortiz, MIT-DMSE

MAPPING THE MECHANICAL PULSE OF SINGLE CARDIOMYOCYTES

Image removed due to copyright restrictions.

I. **Individual cell** : sequences of high mechanical activity alternate with times of quietness, irregular beating which often last for minutes, active sequences were irregular in frequency and amplitude

II. Group of cells: "pulse mapping"

III. **Confluent layer of cells** : beat regularly in terms of frequency and amplitude, enormous stability of pulsing, cell are synchronized and coupled together : diverse pulse shapes due to macroscopic moving centers of contraction and relaxation

Domke, et al. Eur. Biophys. J. (1999) 28, 179

3.052 Nanomechanics of Materials and Biomaterials Tuesday 02/13/07

Prof. C. Ortiz, MIT-DMSE

INTRACELLULAR CALCIUM WAVES IN 2D BONE CELL NETWORKS AS A SINGLE CELL IS LOADED Guo, et al. MCB 3(3) 95-107 (2006)

-Bone cells were cultured on micropatterned network with dimensions close to *in vivo*

-A force of ~ 61 nN was applied to an individual cell in the center with a microfabricated cantilever

-Fluorescence time-lapsed images of intracellular calcium [Ca²⁺] waves signaling molecule)

-Some bone cells exhibit double response through signal propagation via different cell pathways, the ability to respond multiple times without a decrease in magnitude may play a role in memory of previous loading history

Mechanotransduction - mechanism by which cells convert mechanical stimulus into chemical activity.

Images removed due to copyright restrictions.

HIGH RESOLUTION DISPLACEMENT DETECTION : Optical Lever (Beam) Deflection Technique

HIGH RESOLUTION DISPLACEMENT CONTROL : How can we move an object one nanometer at a time?

"**piezoelectric materials**" : material which exibits a change in dimensions in response to an applied voltage and conversely, the material develops an electric potential in response to an applied mechanical pressure

-generally made by sintering ceramic powder to yield polycrystalline material where each crystal has its own electrical dipole (randomly aligned)

3.052 Nanomechanics of Materials and Biomaterials Tuesday 02/13/07

PIEZOELECTRICITY

C. Ortiz, MIT-DMSE

(*Digital Instruments "JV" PZT scanner)

Courtesy of Veeco Instruments. Used with permission.

PIEZO TUBE SCANNERS

Figure by MIT OCW.