APPENDIX (LECTURE \#2) :

I. Review / Summary of Cantilever Beam Theory
II. Summary of Harmonic Motion
III. Limits of Force Detection
IV. Excerpts from Vibrations and Waves, A.P. French, W. W. Norton and Company, 1971

I. Review / Summary of Cantilever Beam Theory from 3.032 [1]

A cantilevered beam is one that is fixed at one end and free at the opposite end, as shown in Figure 1.

Figure 1. Nomenclature for a cantilevered beam with rectangular cross section ; $\mathrm{L}=$ length or $\operatorname{span}(\mathrm{m}), \mathrm{b}=$ width $(\mathrm{m}), \mathrm{t}=$ height or thickness $(\mathrm{m}), \mathrm{I}=$ moment of inertia of cross-sectional area $\left(\mathrm{m}^{4}\right), \mathrm{E}=$ Young's (elastic) modulus $\left(\mathrm{Pa}=\mathrm{N} / \mathrm{m}^{2}\right)$, and EI=flexural modulus $\left(\mathrm{Nm}^{2}\right)$

Consider the case where a concentrated force is applied in the downwards direction at the free end of a cantilever (Figure 2.).

Figure 2. A loaded, cantilevered beam and corresponding free-body diagram
A free-body diagram of the beam shows that a reactant shear force, V , and a reactant bending moment M , must exist in order to maintain static equilibrium. By taking the conditions for equilibrium one finds that:

$$
\sum F_{y}=0=V+F \Rightarrow V=-F(1)
$$

$$
\sum M_{o}=0=M+F L \Rightarrow M=-F L \text { (2) }
$$

No matter where a transverse cut is taken along the beam and a free-body diagram constructed, the magnitude of the shear force, V , is found to be constant and equal to F throughout the length of the beam:

$$
V(x)=F=\text { constant (3) }
$$

Since $V(x)=-\frac{d M}{d x}$, the moment, $M(x)$, varies linearly from a maximum of zero at the free end to a minimum of -FL at the wall. Hence, $M(x)$ is linear and equal to :

$$
M(x)=-F(L-x)(4)
$$

Equations (3) and (4) are shown graphically in Figure 3.

Figure 3. Shear and bending moment diagrams for the cantilevered beam given in Figure 2.

The equation for the slope of the y-displacement curve, $\theta(x)$, is defined as follows:

$$
\begin{equation*}
\theta(x)=\frac{1}{E I} \int_{0}^{x} M(x) d x \tag{5}
\end{equation*}
$$

Substituting equation (4) into equation (5) we obtain :

$$
\begin{gather*}
\theta(x)=-\frac{1}{E I} \int_{0}^{x} F(L-x) d x=-\frac{1}{E I} \int_{0}^{x}(F L-F x) d x \\
\theta(x)=-\frac{1}{E I}\left[(F L x)-\frac{F x^{2}}{2}\right]+C_{1} \tag{6}
\end{gather*}
$$

The integration constant, C_{1}, can be obtained from the boundary condition that the slope of y-displacement curve, $\theta(x)$, must be zero at the wall $(x=0)$:

$$
\begin{gathered}
\theta(0)=0=-\frac{1}{E I}\left[(F L 0)-\left(\frac{F 0^{2}}{2}\right)\right]+C_{1} \Rightarrow C_{1}=0 \\
\theta(x)=-\frac{1}{E I}\left[(F L x)-\left(\frac{F x^{2}}{2}\right)\right]
\end{gathered}
$$

The equation for the y-displacement curve or elastic curve, $y(x)$, can be found as follows:

$$
\begin{equation*}
y(x)=\int_{0}^{x} \theta(x) d x \tag{8}
\end{equation*}
$$

Substituting equation (7) into equation (8) we obtain :

$$
\begin{gather*}
y(x)=-\int_{0}^{x} \frac{1}{E I}\left[(F L x)-\left(\frac{F x^{2}}{2}\right)\right] d x \\
y(x)=-\frac{1}{E I}\left[\left(\frac{F L x^{2}}{2}\right)-\left(\frac{F x^{3}}{6}\right)\right]+C_{2} \tag{9}
\end{gather*}
$$

The integration constant, C_{2}, can be obtained from the boundary condition that the y -displacement $y(x)$ must be zero at the wall $(x=0)$:

$$
\begin{gathered}
y(x)=0=-\frac{1}{E I}\left[\left(\frac{F L 0^{2}}{2}\right)-\left(\frac{F 0^{3}}{6}\right)\right]+C_{2} \Rightarrow C_{2}=0 \\
y(x)=-\frac{F}{E I}\left[\left(\frac{L x^{2}}{2}\right)-\left(\frac{x^{3}}{6}\right)\right]
\end{gathered}
$$

The maximum deflection occurs at the free end of the cantilever and can be found by substituting $x=L$ into equation (10) :

$$
y_{\max }(x=L)=-\frac{F L^{3}}{3 E I}
$$

Equations (10) and (11) are shown graphically in Figure 4.

Figure 4. Elastic curve of cantilevered beam
By rearranging equation (11), one can obtain the applied load as a function of the deflection at the end of the beam:

$$
\begin{equation*}
F=\left(-\frac{3 E I}{L^{3}}\right) y_{\max } \tag{12}
\end{equation*}
$$

Here, we see that the applied force is directly proportional to the displacement at the end of the beam and hence, the cantilever can be represented by a linear elastic, Hookean spring (Figure 5.):

$$
F=k \delta \quad \text { (13) }
$$

where $\delta=y_{\text {max }}$ is the maximum deflection at the end of the cantilever (force spectroscopy notation), and k is the "cantilever spring constant":

$$
k=-\frac{3 E I}{L^{3}}
$$

Figure 5. Representation of cantilevered beam by a linear elastic, Hookean spring

Hence, k is a function only of the beam dimensions and the elastic modulus.
Typically, V-shaped cantilevers are used for high-resolution force spectroscopy experiments (Figure 6.).

Figure 6. Dimensions of a V-shaped cantilever beam

Table I. displays approximate formulas for the k of V -shaped cantilevers.
Table I. Formulas for the k of V -shaped cantilevers [2].

Reference	Cantilever Spring Constant, \mathbf{k}	\% error
$[2]$	$\frac{E t^{3} d}{2 L^{3}}\left[1+\frac{b^{2}}{4 L^{2}}\right]^{-2}$	25
$[3]$	$\frac{0.5 E t^{3} d}{L^{3}}$	16
$[4]$	$\frac{E t^{3} d}{2 L^{3}}\left[1+\frac{4 d^{3}}{b^{3}}\right]^{-1}$	13
$[4]$	$\frac{E t^{3} d}{2 L^{3}} \cos \theta\left[1+\left(\frac{4 d^{3}}{b^{3}}\right)(3 \cos \theta-2)\right]^{-1}$	2

References:

[1] Mechanics of Materials, D. Roylance, John Wiley and Sons, Inc. 1996.
[2] T. R. Albrecht, S. Akamine, T. E. Carver, and C. F. Quate, J. Vac. Sci. Tech. A8, 3386 (1990).
[3] H.-J. Butt, P. Siedle, K. Siefert, K. Fendler, T. Seeger, E. Bamberg, A. L.
Weisenhorn, K. Goldie, and A. Engel, J. Microscopy 169, 75 (1993).
[4] J. E. Sader, Rev. Sci. Instrum. 66 (9), 4583 (1995).

II. Summary of Harmonic Oscillators

(*reference : Vibrations and Waves, A. P. French, W. W. Norton and Company, NY 1971.)

II.A. Free Vibrations

Basic Physics Equations:

$\delta(\mathrm{t})=$ displacement (m)
$\mathrm{v}(\mathrm{t})=$ velocity $(\mathrm{m} / \mathrm{s})=\mathrm{d} \delta(\mathrm{t}) / \mathrm{dt}=\delta^{\prime}(\mathrm{t})$
$\mathrm{a}(\mathrm{t})=\operatorname{acceleration}\left(\mathrm{m} / \mathrm{s}^{2}\right)=\mathrm{d}^{2} \delta(\mathrm{t}) / \mathrm{dt}^{2}=\delta^{\prime \prime}(\mathrm{t})$
$\mathrm{F}(\mathrm{t})=$ force $(\mathrm{N})=\mathrm{ma}(\mathrm{t})$ where : $\mathrm{m}=\mathrm{mass}(\mathrm{g})$
$\mathrm{U}(\delta)=$ potential energy $(\mathrm{Nm})=\int \mathrm{F}(\delta) \mathrm{d} \delta$

Type of Harmonic Motion :	Model Schematic :	Equations of Motion :	Solutions to Equations of Motion :
Simple Harmonic Motion (SHM) : $v=$ natural or resonant frequency $(\mathrm{Hz}=1$ oscillation $/ \mathrm{s}=\mathrm{s}-1$) $\varpi=$ natural or resonant angular frequency $=2 \pi v$ $(\mathrm{rad} / \mathrm{s}-1)$ $\delta_{\mathrm{m}}=$ displacement amplitude (m) $\phi=$ phase constant $\omega t+\phi=$ phase $\mathrm{F}_{\mathrm{s}}=$ spring recovery force $\mathrm{k}=$ spring constant $(\mathrm{N} / \mathrm{m})$		$\begin{aligned} & \mathrm{ma}=\mathrm{F}_{\mathrm{s}} \Rightarrow \\ & \mathrm{~m} \delta^{\prime \prime}(\mathrm{t})+\mathrm{k} \delta(\mathrm{t})=0 \end{aligned}$	$\begin{aligned} & \delta(\mathrm{t})=\delta_{\mathrm{m}} \cos \left(\omega_{\mathrm{o}} \mathrm{t}-\phi\right) \\ & \omega_{0}^{2}=\mathrm{k} / \mathrm{m} \end{aligned}$
Damped Harmonic Motion (DHM): $\beta=$ damping (viscosity) coefficient $\mathrm{F}_{\mathrm{d}}=$ dashpot or dissipative force $\varpi_{\mathrm{o}}{ }^{\prime}=$ natural or resonant angular frequency for a damped system (rad/s-1) $\mathrm{Q}=$ quality factor		$\begin{aligned} & \mathrm{ma}=\mathrm{F}_{\mathrm{s}}+\mathrm{F}_{\mathrm{d}} \Rightarrow \\ & \mathrm{~m} \delta^{\prime \prime}(\mathrm{t})+\beta \delta^{\prime}(\mathrm{t})+ \\ & \mathrm{k} \delta(\mathrm{t})=0 \end{aligned}$	

II.B. Forced Vibrations

Type of Harmonic Motion :	Model Schematic :	Equations of Motion :	Solutions to Equations of Motion :
Driven Harmonic Motion (DHM): $\mathbb{W}=$ frequency of applied force oscillation (rad/s-1) $\omega=\omega_{0}$ "resonance" occurs; maximum amplitude of oscillations, δ_{m}		$\begin{aligned} & \mathrm{ma}=\mathrm{F}_{\mathrm{s}}-\mathrm{F}_{\mathrm{a}} \Rightarrow \\ & \mathrm{~m} \delta^{\prime \prime}(\mathrm{t})+\mathrm{k} \delta(\mathrm{t})= \\ & \mathrm{F}_{\mathrm{a}}(\mathrm{t}) \end{aligned}$	$\begin{aligned} & \delta(\mathrm{t})=\delta_{\mathrm{m}} \cos (\omega \mathrm{t}-\mathrm{\phi}) \\ & \delta_{\mathrm{m}}(\omega)=\mathrm{F}_{\mathrm{m}} /\left(\mathrm{k}-\mathrm{m} \omega^{2}\right) \end{aligned}$
Driven / Damped Harmonic Motion (DDHM): $\mathbb{\omega}=$ frequency of applied force oscillation for damped system (rad/s-1)	forced oscillation:	$\begin{aligned} & \mathrm{ma}=\mathrm{F}_{\mathrm{s}}+\mathrm{F}_{\mathrm{d}}-\mathrm{F}_{\mathrm{a}} \Rightarrow \\ & \mathrm{~m} \delta^{\prime \prime}(\mathrm{t})+\beta \delta^{\prime}(\mathrm{t})+ \\ & \mathrm{k} \delta(\mathrm{t})=\mathrm{F}_{\mathrm{a}}(\mathrm{t}) \end{aligned}$	$\begin{aligned} & \hline \delta(\mathrm{t})=\delta_{\mathrm{m}} \cos \left(\omega^{\prime} \mathrm{t}-\phi\right) \\ & \delta_{\mathrm{m}}\left(\omega^{\prime}\right)=\mathrm{F}_{\mathrm{m}} /\left(\mathrm{k}-\mathrm{m} \omega^{2}\right) \end{aligned}$

III. Limits of Force Detection [1-4]

The lower bound of force detection of any force spectroscopy measurement is determined either by the resolution or thermal fluctuations of the transducer. ${ }^{1,2}$

Transducer Resolution. Previously, we have shown that a highresolution force transducer can be represented by a linear elastic, Hookean spring (equation (13)). Let's assume that the minimum detectable displacement is a one-atom deflection ($\delta_{\min }=0.1 \mathrm{~nm}$). Substituting this value into equation (13) we obtain the minimum detectable force, $\mathbf{F}_{\text {min }}$:

$$
\begin{equation*}
\mathrm{F}_{\min }=(0.1 \mathrm{~nm}) \mathrm{k} \tag{11}
\end{equation*}
$$

Thermal Oscillations. In the absence of any externally applied forces, a force transducer in equilibrium with its surroundings will fluctuate due to the nonzero thermal energy at room temperature, $\mathrm{k}_{\mathrm{B}} \mathrm{T}=4.1 \cdot 10^{-21} \mathrm{Nm}$, where k_{B} is the Boltzmann constant $=1.38 \cdot 10^{-23} \mathrm{~J} / \mathrm{K}$ and T is the absolute temperature (room temperature $\approx 295 \mathrm{~K}$). If we model the force transducer as a onedimensional, free harmonic oscillator as shown in Figure 7.

Figure 7. Thermal oscillation of a free cantilever beam
By neglecting higher modes of oscillation and making use of the equipartition theorum, the average root-mean-square (RMS) amplitude of the displacement oscillation, $\left\langle\delta_{\mathrm{m}}{ }^{2}\right\rangle^{1 / 2}$, can be derived as follows.

The potential energy of a force transducer is

$$
\mathrm{U}=\int_{0}^{\delta} \mathrm{F}(\delta) \mathrm{d} \delta
$$

Substituting Hooke's law for a free, one-dimensional harmonic oscillator (equation (13) into equation (17) and integrating gives

$$
\mathrm{U}=\int_{0}^{\delta} \mathrm{k} \delta \mathrm{~d} \delta \Rightarrow \mathrm{U}=1 / 2 \mathrm{k} \delta^{2}
$$

The equipartition theorum states that if a system is in thermal equilibrium, every independent quadratic term in the total energy has a mean value equal to $1 / 2 k_{B} T$. Hence,

$$
\mathrm{U}=1 / 2 \mathrm{k} \delta_{\mathrm{m}}{ }^{2}=1 / 2 \mathrm{k}_{\mathrm{B}} \mathrm{~T} \text { (18) }
$$

where δ_{m} is the amplitude of the displacement oscillation (Figure 7.). Rearranging equation (1) and solving for δ_{m} we obtain

$$
\begin{equation*}
\left\langle\delta_{m}^{2}\right\rangle^{1 / 2}=\sqrt{\frac{k_{B} T}{k}} \tag{19}
\end{equation*}
$$

where : <> denotes a statistical mechanical average over time. Substituting eq. (19) into Hooke's Law, equation (13), gives the equation for the RMS amplitude fluctuations in force:

$$
\left\langle F_{m}^{2}\right\rangle^{1 / 2}=\sqrt{\frac{k_{B} T}{k}}
$$

A more precise formulation can be derived for a damped harmonic oscillator ${ }^{[5]}$:

$$
\left\langle F_{m}^{2}\right\rangle^{1 / 2}=\sqrt{\frac{4 k_{B} T k B}{w_{o} ' Q}}
$$

where B is the measured bandwidth $\left(\mathrm{s}^{-1}\right), \mathrm{Q}$ is the quality factor $=(\mathrm{km})^{1 / 2} / \beta, \mathrm{m}$ is the mass $\left(\mathrm{Ns}^{2} / \mathrm{m}\right), \beta$ is the damping coefficent $(\mathrm{Ns} / \mathrm{m}), \mathrm{w}_{\mathrm{o}}{ }^{\prime}$ is the resonant frequency for a damped system $\left(\mathrm{s}^{-1}\right)$, and k is the transducer spring constant (N / m).

References:

[1] E. Evans, K. Ritchie, and R. Merkel, Biophys. J. 1995, 68, 2580.
[2] Nanosystems : Molecular Machinergy, Manufacturing, and Computation, K. Eric Drexler, John Wiley and Sons, 1992.
[3] J. L. Hutter, Bechhoefer, J. Rev. Sci. Instrum. 1993, 64, 1868.
[4] H.-J. Butt, P. Siedle, K. Seifert, K. Fendler, T. Seeger, E. Bamburg, A. L.
Weisenhorn, K. Goldie, and A. Engel J. Microsc. 1993, 169, 75-84.
[5] D. Sarid, Scanning Force Microscopy, Oxford University Press, p. 48

