Engineering Economics:

Comparing Financial Characteristics of Design Options

Engineering Econ Example: Comparing Alternatives

Figure by MIT OCW.

Example: Comparing Alternatives

Cost	Site A	Site B	
Cost to build @ site	$\$ 250,000$	$\$ 500,000$	
Monthly Costs			
Average Hauling Distance	6	5	miles
Hauling Expense	$\$ 15$	$\$ 15$	/mile
Shipments	250	250	/month
Total Monthly Cost	$\$ 22,500$	$\$ 18,750$	

Monthly Savings	$\$ 3,750$

Example: Comparing Alternatives

- Simple payback:

- Site B is preferred after 5 years

$$
\frac{(\$ 500,000-\$ 250,000)}{\$ 3,750 / \text { month }} \approx 67 \text { months }
$$

- Considering reasonable business assumptions (15% discount rate)
- Site B is preferred after > 12 years

How do we come up with such a difference? ...

What is Engineering Economy?

- Engineering economy systematic evaluation of the economic merits of proposed solutions to engineering problems
- Principles:
- Develop the alternatives
- Alternatives need to be identified and defined.
- Focus on the difference
- Only the differences in expected future outcomes among the alternatives will effect the decision.
- Use a consistent viewpoint
- Prospective outcomes should be developed from a consistent, defined viewpoint.
- Consider all relevant criteria
- (try to) Use a common unit of measure
- Make uncertainty explicit
- Uncertainty is inevitable. Identify and explore it in analyses.
- Revisit your decisions

Engineering Economy

- Objective - Evaluation
- How to compare the economic value of alternative design options?
- Basis - Cash Flow Analysis
- One is indifferent between investments with equivalent cash flows
- Equivalence occurs when one is indifferent between two sets of cash flows
- Key issues
- Time value of money
- Cash flows occurring at different times
- "Designs" with different durations

Cost Concepts: Nomenclature

- Capital
- Wealth (money or property) that can be used to produce more wealth
- Sunk cost
- Expense which has happened in the past. No relevance to alternatives being considered.
- Opportunity cost
- Cost / value of the best rejected alternative
- Fixed cost
- Magnitude does NOT vary with changes in level of activity (output) -over some range of activity
- Insurance
- Management and administrative salaries
- Licenses
- Variable cost
- Magnitude DOES vary with level of activity (output)

Engineering Economy

- Objective - Evaluation

- How to compare the economic value of alternative design options?

\$20k

$\$ 25 \mathrm{k}$

\$350 / Month
Lease

Figure by MIT OCW.

Determining Equivalence: Issue - Value over time

- Money now has a different value than the same amount at a different date
- Would you prefer $\$ 75$ today or $\$ 80$ in one year?
- It depends - Rate of return on investment
- Proper name: Discount Rate, í or \mathbf{r}
- Future benefits / costs are reduced (ie, "discounted") to compare with present

Return on Capital

- Why consider return on capital?
- For most engineering projects, capital must be tied up for some period of time
- Purchase a piece of equipment
- Fund a research project
- Revenues from the use of capital
- Provides incentive to forego using the capital today for consumption
- Provides incentive to take on risk of Iosing capital
- Opportunity cost (of capital)
- Profit available from the use of capital in some other alternative
- Frequent engineering economy question:

Does the return on capital exceed the opportunity cost?

Notation

- $\mathbf{i}=$ effective interest rate per interest period
- $\mathbf{N}=$ number of compounding periods
- $\mathbf{P}=$ present sum of money (present value)
equivalent value of cash flows at a reference point in time called the present
- F = future sum of money (future value)
equivalent value of cash flows at a reference point in the time called the future
- A = end-of-period cash flows
in a uniform series of payments continuing for a specified time, starting at the end of the first period and continuing to the end of the last period

How does Capital Change in Value with Time?

Simple Interest

- Simple interest (infrequently used)
- Total interest earned (charged) is linearly proportional to
- the initial amount of principal (Ioan)
- Interest rate
- Number of time periods of commitment

Total Interest $=I=P \cdot N \cdot i$
$\mathrm{P}=$ principal amount lent or borrowed
$\mathrm{N}=$ number of interest periods
$\mathrm{i}=$ interest rate per period

How does Capital Change in Value with Time?

Compound Interest

- Compound interest
- Interest earned (charged) for a period is based on
- Remaining principal plus
- Accumulated (unpaid) interest at the beginning of the period
I_{n} (Interest in Period n) $=\mathrm{P}_{\mathrm{n}} \mathrm{i}$

$$
\begin{aligned}
P_{n} & =\text { Principal in period } \mathrm{n} \\
i & =\text { interest rate per period } \\
I & =\sum_{n} I_{n}
\end{aligned}
$$

Cash Flow Diagram

Massachusetts Institute of Technology Department of Materials Science \& Engineering

Formulae for \mathbf{N} Periods Single Payments

Future Amount =

 $P(1+i)^{N}=$ P (caf)caf \equiv Compound Amount Factor
Common notation:

$\mathrm{F}=\mathrm{P}(\mathrm{F} / \mathrm{P}, \mathrm{i} \% \mathrm{~N})$

Formulae for N Periods -

Single Payments
Present Amount =

$$
\frac{F}{c a f}=\frac{F}{(1+i)^{N}}
$$

1/caf \equiv Present Worth Factor

Common notation:
$P=F(P / F, i \% N)$

Single Payment Example

- An investor can purchase land that will be worth \$10k in 6 years
- If the investor's discount rate is 8%, what is the max they should pay today? Department of Materials Science \& Engineering

How Do Specific Parameters Effect the Result?

Present Value of Single Future Payment (\$10k)

\square Massachusetts Institute of Technology Department of Materials Science \& Engineering
3.080 Econ \& Enviro Issues In Materials Selection Randolph Kirchain Engineering Economic Analysis: Slide 19

Relating a Uniform Series of Payments to P or F

- Uniform series of payments - often called an Annuity

- By convention:
- \mathbf{P} at time 0
- A at end of period
- F at end of period

Therefore:

- $1^{\text {st }} A, 1$ period after P
- Last A, coincident with F

Derive Uniform Series Compound Amount Factor

- How do we find the present value (PV) of N payments @ \$A?
- Subtract the PV of an infinite series of payments
 starting at $\mathrm{N}+1$ from the PV of an infinite series of payments starting at 1

Formulas for \mathbf{N} Periods Finite Series of Equal Payments

a) Future Value (F)
$=\sum_{i}^{N} A(1+r)^{i}$
$=A \frac{\left[(1+r)^{N}-1\right]}{r}$
b) Payment (A)

$$
\begin{aligned}
& =P \times r \frac{\left[(1+r)^{N}\right]}{\left[(1+r)^{N}-1\right]} \\
& =P(c r f)
\end{aligned}
$$

crf = Capital Recovery Factor

