Self-Assessment: Bonding and Molecules

Weekly Homework Quiz

Problem #1

(a) Draw the energy level diagram that shows that the linear combination of atomic orbitals from two atoms of oxygen (O) results in the formation of the stable molecule, O_2^{2-} . The molecular orbitals in O_2^{2-} increase in energy according to the sequence σ_{2s} , σ_{2s}^* , σ_{2p_z} , $\pi_{2p_{x,y}}$, $\pi_{2p_{x,y}}^*$, $\sigma_{2p_z}^*$.

(b) Indium phosphide (InP) is a semiconductor with a band gap, $E_{\rm g}$, of 1.27 eV. Calculate the value of the absorption edge of this material. Express your answer in meters.

Problem #2

Chemical analysis of a silicon (Si) cr	vstal reveals boron (B	3) at a level	of 0.0003	atomic percent
Chemical analysis of a sincon ($\mathcal{O}_{\mathbf{I}}$	your reveals boron (D	<i>)</i> , at a 10 (01	01 0.0003	atomic percent

(a) Assuming that the concentration of thermally excited charge carriers from the Si matrix is negligible, calculate the density of free charge carriers (carriers/cm³) in this Si crystal.

(b) Draw a schematic energy band diagram for this material and label the valence band, conduction band, band gap, and the energy level associated with the B impurity.

MIT OpenCourseWare http://ocw.mit.edu

3.091SC Introduction to Solid State Chemistry Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.