3.091 OCW Scholar

Self-Assessment Structure of the Atom

Supplemental Exam Problems for Study Solution Key

Tantalum metal is produced by the reaction of potassium heptafluorotantalate (K₂TaF₇) with elemental sodium (Na) in a reactor heated to 850°C. The by-products are potassium fluoride (KF) and sodium fluoride (NaF).

(a) Write a balanced equation for the reaction.

K, Ta F, +51h -> Ta +2KF + 51hF

(b) A reactor is charged with 222 kg of K₂TaF₇ and 6.66 kg of Na, and the reaction is allowed to go to completion. Calculate how much tantalum is produced. Express your answer in kg.

K 39.1 K2 Taky 392.1 1839.1 180.9 180

clearly he amount of Na < 5x mol amount of Ta

00 Na is limiting reagent
00 Ta y'eld = \pm moles Nk = \frac{289.6}{5.9} = 57.9

=> 57.9 x /80.9 g = 10.5 kg /a

(a) Name the element with these ground-state electron configurations:

(i) a <i>neutral atom</i> with $[Kr]4d^{10}5s^25p^1$
(ii) an atom with <i>net charge</i> 2– and [Ne] $3s^23p^6$
(b) Write the quantum numbers (n, l, m, s) of each of the 5d and 6s electrons in rhenium (Re). $(6, 0, 0, \frac{1}{2})$ $(5, 2, -2, \frac{1}{2})$ $(5, 2, -1, \frac{1}{2})$ $(5, 2, -1, \frac{1}{2})$ $(5, 2, 0, \frac{1}{2})$ $(5, 2, 2, \frac{1}{2})$
(c) For each of the following pairs, (1) identify the larger atom or ion and (2) state one reason for your choice. (i) Rb and Rb ⁺
isoelectronic ces/ Kr which & n=4
(ii) Rb+ and Kr Kr. Rb+ is Koelectorie w/ Kr but Rb+ has mole protons: Abul no e s an more fightly band in Rb+= Rb+ & Snaller (d) Making reference to the underlying physical principle, describe how a beam of mercury atoms
(Hg) would behave in the Stern-Gerlach experiment (passage of a beam of atoms through a divergent magnetic field)
Hex 4ft sol 1065 => nountained es
ës in divergent meg. field, no net force is
exerted on the in g the atom bearn is no deflection of the atom bearn
in no deflection of the alone secure

Determine whether a beam of α -particles with a de Broglie wavelength of 3.091×10^{-12} m is capable of ionizing argon (Ar) gas. α -particles are doubly ionized helium atoms (He²⁺).

Confare E_{∞} with I.E.g for $E_{\infty} = \frac{1}{2}mo^{2} = \frac{1}{2}h^{2} = \frac{h^{2}}{2m}\lambda^{2}$ I.E. f from V.I. = 15.8 eV $M = 4.00 \times 1.66 \times 10^{27} \text{ kg}$ $6.6 \times 10^{-34})^{2} = 343 \times 10^{-18} \text{ for } 1.6 \times 10^{-18}$ $E_{\infty} = \frac{(6.6 \times 10^{-34})^{2}}{2 \times 4 \times 1.66 \times 10^{-27} (3.091 \times 10^{-12})^{2}} = \frac{343 \times 10^{-18} \text{ for } 1.6 \times 10^{-18}}{1.6 \times 10^{-18}}$ $E_{\infty} = \frac{(6.6 \times 10^{-34})^{2}}{2 \times 4 \times 1.66 \times 10^{-27} (3.091 \times 10^{-12})^{2}} = \frac{343 \times 10^{-18} \text{ for } 1.6 \times 10^{-18}}{1.6 \times 10^{-18}}$ $E_{\infty} = \frac{(6.6 \times 10^{-34})^{2}}{2 \times 4 \times 1.66 \times 10^{-27} (3.091 \times 10^{-12})^{2}} = \frac{343 \times 10^{-18} \text{ for } 1.6 \times 10^{-18}}{1.6 \times 10^{-18}}$ $E_{\infty} = \frac{(6.6 \times 10^{-34})^{2}}{2 \times 4 \times 1.66 \times 10^{-27} (3.091 \times 10^{-12})^{2}} = \frac{343 \times 10^{-18}}{1.6 \times 10^{-18}}$ $E_{\infty} = \frac{(6.6 \times 10^{-34})^{2}}{2 \times 4 \times 1.66 \times 10^{-18}} = \frac{343 \times 10^{-18}}{1.6 \times 10^{-18}}$ $E_{\infty} = \frac{(6.6 \times 10^{-34})^{2}}{2 \times 4 \times 1.66 \times 10^{-18}} = \frac{343 \times 10^{-18}}{1.6 \times 10^{-18}}$ $E_{\infty} = \frac{(6.6 \times 10^{-34})^{2}}{2 \times 4 \times 1.66 \times 10^{-18}} = \frac{343 \times 10^{-18}}{1.6 \times 10^{-18}} = \frac{343 \times$

(a) In box notation (arrows for electrons and boxes for orbitals), give the ground-state electron configuration of thallium (Tl).

(b) Specify the values of the 4 quantum numbers for the outermost electron in thallium.

(n, l, m, s)(6, 1, -1, 1/2)

(c) Are thallium atoms paramagnetic? If so, why? If not, why not?

ys. unpaired electron

(d) The ionic forms of thallium are Tl⁺ and Tl³⁺. Explain with reference to the relevant electron configurations.

Tet has filled subshells 65, 4f, 5d Tet has filled subshells 4f + 5d MIT OpenCourseWare http://ocw.mit.edu

3.091SC Introduction to Solid State Chemistry Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.