Matrix and Index Notation

David Roylance
Department of Materials Science and Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139

September 18, 2000

A vector can be described by listing its components along the $x y z$ cartesian axes; for instance the displacement vector \mathbf{u} can be denoted as u_{x}, u_{y}, u_{z}, using letter subscripts to indicate the individual components. The subscripts can employ numerical indices as well, with 1,2 , and 3 indicating the x, y, and z directions; the displacement vector can therefore be written equivalently as u_{1}, u_{2}, u_{3}.

A common and useful shorthand is simply to write the displacement vector as u_{i}, where the i subscript is an index that is assumed to range over $1,2,3$ (or simply 1 and 2 if the problem is a two-dimensional one). This is called the range convention for index notation. Using the range convention, the vector equation $u_{i}=a$ implies three separate scalar equations:

$$
\begin{aligned}
& u_{1}=a \\
& u_{2}=a \\
& u_{3}=a
\end{aligned}
$$

We will often find it convenient to denote a vector by listing its components in a vertical list enclosed in braces, and this form will help us keep track of matrix-vector multiplications a bit more easily. We therefore have the following equivalent forms of vector notation:

$$
\mathbf{u}=u_{i}=\left\{\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right\}=\left\{\begin{array}{l}
u_{x} \\
u_{y} \\
u_{z}
\end{array}\right\}
$$

Second-rank quantities such as stress, strain, moment of inertia, and curvature can be denoted as 3×3 matrix arrays; for instance the stress can be written using numerical indices as

$$
[\sigma]=\left[\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right]
$$

Here the first subscript index denotes the row and the second the column. The indices also have a physical meaning, for instance σ_{23} indicates the stress on the 2 face (the plane whose normal is in the 2 , or y, direction) and acting in the 3 , or z, direction. To help distinguish them, we'll use brackets for second-rank tensors and braces for vectors.

Using the range convention for index notation, the stress can also be written as $\sigma_{i j}$, where both the i and the j range from 1 to 3 ; this gives the nine components listed explicitly above.
(Since the stress matrix is symmetric, i.e. $\sigma_{i j}=\sigma_{j i}$, only six of these nine components are independent.)

A subscript that is repeated in a given term is understood to imply summation over the range of the repeated subscript; this is the summation convention for index notation. For instance, to indicate the sum of the diagonal elements of the stress matrix we can write:

$$
\sigma_{k k}=\sum_{k=1}^{3} \sigma_{k k}=\sigma_{11}+\sigma_{22}+\sigma_{33}
$$

The multiplication rule for matrices can be stated formally by taking $\mathbf{A}=\left(a_{i j}\right)$ to be an $(M \times N)$ matrix and $\mathbf{B}=\left(b_{i j}\right)$ to be an $(R \times P)$ matrix. The matrix product $\mathbf{A B}$ is defined only when $R=N$, and is the $(M \times P)$ matrix $\mathbf{C}=\left(c_{i j}\right)$ given by

$$
c_{i j}=\sum_{k=1}^{N} a_{i k} b_{k j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i N} b_{N k}
$$

Using the summation convention, this can be written simply

$$
c_{i j}=a_{i k} b_{k j}
$$

where the summation is understood to be over the repeated index k. In the case of a 3×3 matrix multiplying a 3×1 column vector we have

$$
\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left\{\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right\}=\left\{\begin{array}{l}
a_{11} b_{1}+a_{12} b_{2}+a_{13} b_{3} \\
a_{21} b_{1}+a_{22} b_{2}+a_{23} b_{3} \\
a_{31} b_{1}+a_{32} b_{2}+a_{33} b_{3}
\end{array}\right\}=a_{i j} b_{j}
$$

The comma convention uses a subscript comma to imply differentiation with respect to the variable following, so $f_{, 2}=\partial f / \partial y$ and $u_{i, j}=\partial u_{i} / \partial x_{j}$. For instance, the expression $\sigma_{i j, j}=0$ uses all of the three previously defined index conventions: range on i, sum on j, and differentiate:

$$
\begin{aligned}
& \frac{\partial \sigma_{x x}}{\partial x}+\frac{\partial \sigma_{x y}}{\partial y}+\frac{\partial \sigma_{x z}}{\partial z}=0 \\
& \frac{\partial \sigma_{y x}}{\partial x}+\frac{\partial \sigma_{y y}}{\partial y}+\frac{\partial \sigma_{y z}}{\partial z}=0 \\
& \frac{\partial \sigma_{z x}}{\partial x}+\frac{\partial \sigma_{z y}}{\partial y}+\frac{\partial \sigma_{z z}}{\partial z}=0
\end{aligned}
$$

The Kroenecker delta is a useful entity is defined as

$$
\delta_{i j}= \begin{cases}0, & i \neq j \\ 1, & i=j\end{cases}
$$

This is the index form of the unit matrix \mathbf{I} :

$$
\delta_{i j}=\mathbf{I}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

So, for instance

$$
\sigma_{k k} \delta_{i j}=\left[\begin{array}{ccc}
\sigma_{k k} & 0 & 0 \\
0 & \sigma_{k k} & 0 \\
0 & 0 & \sigma_{k k}
\end{array}\right]
$$

where $\sigma_{k k}=\sigma_{11}+\sigma_{22}+\sigma_{33}$.

MIT OpenCourseWare
http://ocw.mit.edu

3.11 Mechanics of Materials

Fall 1999

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

