Statistics in Materials Testing

- Basic statistical measures

$$
\begin{array}{r}
\text { arithmetic mean } \overline{\sigma_{f}}=\frac{1}{N} \sum_{i=1}^{N} \sigma_{f, i} \\
\text { standard deviation } \quad s=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(\overline{\sigma_{f}}-\sigma_{x, i}\right)^{2}}
\end{array}
$$

Room-temperature tensile strength of a graphite/epoxy composite (P. Shyprykevich, ASTM STP 1003, pp. 111-135, 1989.) (in kpsi): $72.5,73.8,68.1,77.9,65.5,73.23,71.17,79.92,65.67,74.28,67.95$, $82.84,79.83,80.52,70.65,72.85,77.81,72.29,75.78,67.03,72.85$, $77.81,75.33,71.75,72.28,79.08,71.04,67.84,69.2,71.53$.

$$
\overline{\sigma_{f}}=73.28, \quad s=4.63(\mathrm{kpsi})
$$

The coefficient of variation is C.V. $=(4.63 / 73.28) \times 100 \%=6.32 \%$.

- The normal distribution

Figure 1: Histogram and normal distribution functions.

$$
f(X)=\frac{1}{\sqrt{2 \pi}} \exp \frac{-X^{2}}{2}, \quad X=\frac{\sigma_{f}-\overline{\sigma_{f}}}{s}
$$

Cumulative probability

$\pm x / s$	$\%$
1	68.3
1.96	95.0
2	95.8
3	99.7

Figure 2: Cumulative probabilty plot.

- Confidence limits

$$
\text { distribution of means } s_{m}=\frac{s}{\sqrt{N}}
$$

Since 95% of all measurements of a normally distributed population lie within 1.96 standard deviations from the mean, the ratio $\pm 1.96 s / \sqrt{N}$ is the range over which we can expect 95 out of 100 measurements of the mean to fall.

$$
\begin{gathered}
\chi^{2}=\sum \frac{(\text { expected }- \text { observed })^{2}}{\text { observed }} \\
=\sum_{i=1}^{N} \frac{\left(N p_{i}-n_{i}\right)^{2}}{n_{i}}
\end{gathered}
$$

where N is the total number of specimens, n_{i} is the number of specimens actually failing in a strength increment $\Delta \sigma_{f, i}$ and p_{i} is the probability expected from the assumed distribution of a specimen having having a strength in that increment.

Lower	Upper Limit	Observed Limit	Expected	
0	69.33	7	5.9	0.198
69.33	72.00	5	5.8	0.116
72.00	74.67	8	6.8	0.214
74.67	77.33	2	5.7	2.441
77.33	∞	8	5.7	0.909

The number of degrees of freedom for this Chi-square test is 4 ; this is the number of increments less one, since we have the constraint that $n_{1}+n_{2}+n_{3}+n_{5}=30$. From Table 3 in Appendix H, we read that $\alpha=0.05$ for $\chi^{2}=9.488$, where α is the fraction of the χ^{2} population with values of χ^{2} greater than 9.488.

- The "B-allowable."

The "B-allowable" strength is the stress level for which we have 95% confidence that 90% of all specimens will have at least that strength.

$$
B=\overline{\sigma_{f}}-k_{B} s
$$

where k_{b} is $n^{-1 / 2}$ times the 95 th quantile of the "noncentral t -distribution;" this factor is tabulated, but can be approximated by the formula

$$
k_{b}=1.282+\exp (0.958-0.520 \ln N+3.19 / N)
$$

In the case of the previous 30 -test example, k_{B} is computed to be 1.78 , so this is less conservative than the $3 s$ guide. The B-basis value is then

$$
B=73.28-(1.78)(4.632)=65.05
$$

- The Weibull distribution

Figure 3: Weibull plot of strength data.

$$
\begin{aligned}
\ln P_{s} & =-\left(\frac{\sigma}{\sigma_{0}}\right)^{m} \\
\ln \left(\ln P_{s}\right) & =-m \ln \left(\frac{\sigma}{\sigma_{0}}\right)
\end{aligned}
$$

Hence the double logarithm of the probability of exceeding a particular strength σ versus the logarithm of the strength should plot as a straight line with slope m.
The Weibull equation can be used to predict the magnitude of the size effect. If for instance we take a reference volume V_{0} and express the volume of an arbitrary specimen as $V=n V_{0}$, then the probability of failure at volume V is found by multiplying $P_{s}(V)$ by itself n times:

$$
\begin{gathered}
P_{s}(V)=\left[P_{s}\left(V_{0}\right)\right]^{n}=\left[P_{s}\left(V_{0}\right)\right]^{V / V_{0}} \\
P_{s}(V)=\exp -\frac{V}{V_{0}}\left(\frac{\sigma}{\sigma_{0}}\right)^{m}
\end{gathered}
$$

Hence the probability of failure increases exponentially with the specimen volume.

- Remember Mark Twain's aphorism:

There are lies, damned lies, and statistics.

MIT OpenCourseWare
http://ocw.mit.edu

3.11 Mechanics of Materials

Fall 1999

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

